PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simple 2D gravity–density inversion for the modeling of the basin basement: example from the Banat area, Serbia

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have developed a technique to calculate lateral density distribution of the sedimentary basin basement by combining linear gravity–density inversion and 2D forward modeling. The procedure requires gravity anomaly data, depth-to-basement data and density data for the sediments (density–depth distribution). Gravity effect of density variations in the basement was extracted from the total gravity anomaly by removing the joint effect of the sediments with vertical density variations and homogeneous basement of average density contrast (calculated by 2D modeling). Gravity effect of the sediments was calculated using depth-to-basement data and density–depth function, based on borehole logging data. Bouguer slab formula was used in order to simplify basement model and calculate the operator for the linear inversion of gravity effect of the basement into lateral density distribution. The results were tested by forward modeling, and differences between observed and modeled gravity data were used for the next iteration of the inversion and correction of density values in each point along the profile. The procedure was tested using synthetic models and field example, and both results were satisfying, especially taking into account the simplicity of the inversion technique. The main problem was the effect of abrupt changes in the basement topography on density distribution, but it was downsized by filtering. Basement density maps were compiled based upon the density distribution along the profiles.
Czasopismo
Rocznik
Strony
1747--1758
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia
  • Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia
  • Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia
Bibliografia
  • 1. Azad MR, Koneshloo M, Kamakar Rouhani A, Aghajani H (2016) Comparison of factorial kriging analysis method and upward continuation filter to recognize subsurface structures—a case study: gravity data from a hydrocarbon field in the southeast sedimentary basins of the East Vietnam Sea. Acta Geophys 64:398–416. https://doi.org/10.1515/acgeo-2015-0068
  • 2. Bada G, Horváth F, Fejes I, Gerner P (1999) Review of the present-day geodynamics of the Pannonian basin: progress and problems. J Geodyn 27:501–527. https://doi.org/10.1016/S0264-3707(98)00013-1
  • 3. Bear GW, Al-Shukri HJ, Rudman AJ (1995) Linear inversion of gravity data for 3-D density distributions. Geophysics 60:1352–1364. https://doi.org/10.1190/1.1443871
  • 4. Bielik M, Krajňák M, Makarenko I, Legostaeva O, Starostenko VI, Bošanský M, Grinč M, Hók J (2013) 3D gravity interpretation of the pre-Tertiary basement in the intramontane depressions of the Western Carpathians: a case study from the Turiec Basin. Geol Carpath 64:399–408. https://doi.org/10.2478/geoca-2013-0027
  • 5. Bilibajkić P, Mladenović M, Mujagić S, Rimac I (1979) Explanation for the gravity map of SFR Yugoslavia—Bouguer anomalies—1:500 000. Federal Geological Institute, Belgrade
  • 6. Ćalić J, Milošević MV, Gaudenji T, Štrbac D, Milivojević M (2012) Panonska nizija kao morfostrukturna jedinica Srbije. Glasnik Serbian Geograph Soc 92:47–70
  • 7. Čanović M, Kemenci R (1988) The Mesozoik of the Pannonian basin in Vojvodina (Yugoslavia)—stratigraphy and facies, magmatism, paleogeography. Matica srpska, Novi Sad
  • 8. Chakravarthi V, Ramamma B (2015) Determination of sedimentary basin basement depth: a space domain based gravity inversion using exponential density function. Acta Geophys 63:1066–1079. https://doi.org/10.1515/acgeo-2015-0027
  • 9. Dolton GL (2006) Pannonian Basin Province, Central Europe (Province 4808) – Petroleum geology, total petroleum systems, and petroleum resource assessment, U.S. Geological Survey. https://pubs.usgs.gov/bul/2204/b/pdf/b2204-b_508.pdf. Accessed 24 Apr 2019
  • 10. Fries M, Filho WM, Dourado JC, Fernandes MA (2017) Gravimetric survey and modeling of the basement morphology in the sedimentary thickness characterization, NE portion of Paraná Sedimentary Basin—Brazil. Braz J Geol 47:249–260. https://doi.org/10.1590/2317-4889201720160117
  • 11. Gallardo-Delgado LA, Pérez-Flores MA, Gómez-Treviño E (2003) A versatile algorithm for joint 3D inversion of gravity and magnetic data. Geophysics 68:949–959. https://doi.org/10.1190/1.1581067
  • 12. García-Abdeslem J (2005) The gravitational attraction of a right rectangular prism with density varying with depth following a cubic polynomial. Geophysics 70:J39–J42. https://doi.org/10.1190/1.2122413
  • 13. Hachani F, Balti H, Kadri A, Gasmi M (2016) Gravity data from the Teboursouk area (“Diapirs zone”, northern Tunisia): characterization of deep structures and updated tectonic pattern. Acta Geophys 64:379–397. https://doi.org/10.1515/acgeo-2015-0072
  • 14. Hammer S (1963) Deep gravity interpretation by stripping. Geophysics 28:369–378. https://doi.org/10.1190/1.1439186
  • 15. Hansen RO (1999) An analytical expression for the gravity field of a polyhedral body with linearly varying density. Geophysics 64:75–77. https://doi.org/10.1190/1.1444532
  • 16. Horváth F (1995) Phases of compression during the evolution of the Pannonian basin and its bearing on hydrocarbon exploration. Mar Pet Geol 12:837–844
  • 17. Horváth F, Royden LH (1981) Mechanism for formation of the intra-Carpathian basins: a review. Earth Evol Sci 1:307–316
  • 18. Ioane D, Calota C, Ion D (2005) Deep geological structures as revealed by 3D gravity stripping: western part of the Moesian Platform, Romania. J Balkan Geophys Soc 8:129–138
  • 19. Kemenci R, Čanović M (1997) Geologic setting of the pre-tertiary basement in Vojvodina (Yugoslavia) part I: the Tisza Mega-unit of North Vojvodina. Acta Geol Hung 40:1–36
  • 20. Košćal M, Menković L, Mijatović M, Knežević M (2005) Geomorphological map of the autonomous province of Vojvodina 1:200000. Provincial secretariat for energy and mineral resources of AP Vojvodina, Geozavod-Gemini
  • 21. LaFehr TR (1991a) Standardization in gravity reduction. Geophysics 56:1170–1178. https://doi.org/10.1190/1.1443137
  • 22. LaFehr TR (1991b) An exact solution for the gravity curvature (Bullard B) correction. Geophysics 56:1179–1184. https://doi.org/10.1190/1.1443250
  • 23. Litinsky VA (1989) Concept of effective density: key to gravity determinations for sedimentary basins. Geophysics 54:1474–1482. https://doi.org/10.1190/1.1442611
  • 24. Maxant J (1980) Variation of density with rock type, depth and formation in the Western Canada Basin from density logs. Geophysics 45:1061–1076. https://doi.org/10.1190/1.1441107
  • 25. Nabighian MN, Ander ME, Grauch VJS, Hansen RO, LaFehr TR, Li Y, Peirce JW, Philips JD, Ruder ME (2005) Historical development of the gravity method in exploration. Geophysics 70:63ND–89ND. http://dx.doi.org/10.1190/1.2133785
  • 26. Pallero JLG, Fernández-Martínez JL, Bonvalot S, Fudym O (2017) 3D gravity inversion and uncertainty assessment of basement relief via particle swarm optimization. J Appl Geophys 139:338–350. https://doi.org/10.1016/j.jappgeo.2017.02.004
  • 27. Pavelić D (2001) Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Res 13:359–376. https://doi.org/10.1046/j.0950-091x.2001.00155.x
  • 28. Pigott JD, Radivojević D (2010) Seismic stratigraphy based chronostratigraphy (SSBC) of the Serbian Banat region of the Pannonian Basin. Cent Eur J Geosci 2:481–500.https://doi.org/10.2478/v10085-010-0027-2
  • 29. Pohánka V (1998) Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys Prospect 46:391–404. https://doi.org/10.1046/j.1365-2478.1998.960335.x
  • 30. Psilovikos A (1984) Geomorphological and structural modification of the Serbomacedonian massif during the neotectonic stage. Tectonophysics 110:27–45. https://doi.org/10.1016/0040-1951(84)90056-8
  • 31. Radivojević D (2014) Regional geological characteristic of Miocene sediments in northern Banat region. Dissertation University of Belgrade
  • 32. Radivojević D, Lj Rundić, Knežević S (2010) Geology of the Čoka structure in northern Banat (Central Paratethys, Serbia). Geol Carpath 61:341–352. https://doi.org/10.2478/v10096-010-0020-5
  • 33. Rao DB (1990) Analysis of gravity anomalies of sedimentary basins by an asymmetrical trapezoidal model with quadratic density function. Geophysics 55:226–231. https://doi.org/10.1190/1.1442830
  • 34. Rao CV, Chakravarthi V, Raju ML (1993) Parabolic density function in sedimentary basin modeling. Pure Appl Geophys 140:493–501. https://doi.org/10.1007/BF00876967
  • 35. Royden LH, Horváth F (1988) The Pannonian Basin—a study in Basin evolution. AAPG Memoir 45, Tulsa
  • 36. Silva JB, Costa DC, Barbosa VC (2006) Gravity inversion of basement relief and estimation of density contrast variation with depth. Geophysics 71:J51–J58. https://doi.org/10.1190/1.2236383
  • 37. Szabo Z, Pancsics Z (1999a) Rock densities in the Pannonian basin-Hungary. Geophys Trans 42:5–27
  • 38. Szabo Z, Pancsics Z (1999b) Gravity map of Hungary corrected for basin effect. Geophys Trans 42:41–54
  • 39. Szalaiová E, Bielik M, Makarenko I, Legostaeva O, Hók J, Starostenko V, Šujan M, Šefara J (2008) Calculation of a stripped gravity map with a high degree of accuracy: a case study of Liptovská Kotlina Basin (Northern Slovakia). Geol Q 52:103–114
  • 40. Tari G (1992) Late Neogene transpression in the Northern Thrust zone Mecsek Mts. Hungary. Annales of the Eötvös University Budapest Sect Geol 29:165–187
  • 41. Toushmalani R, Saibi H (2015) Fast 3D inversion of gravity data using Lanczos bidiagonalization method. Arab J Geosci 8:4969–4981. https://doi.org/10.1007/s12517-014-1534-4
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64ae5126-8d19-4267-a82b-c53defc6b3a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.