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Abstract
In the present paper, we deal with the methodology of constructing modular number
systems (MNS), named also residue number systems, on arbitrary mathematical
structures such as finite groups, rings and Galois fields.

1. Introduction

The technique of modular information processing is oriented towards imple-
mentations of parallel computations within the framework of extensive class
of procedures which can be practically defined on arbitrary mathematical
structures. Thus, it is natural that the common methodology of construct-
ing modular number systems (MNS), first of all minimum redundant MNS,
on the set of ranges, which have received the wide distribution in modern
computer applications, should be developed. First of all, it concerns the sets
of real and complex numbers, quaternions, polynomials, etc.

The theoretical foundations of the offered technique for constructing the
MNS are based on an abstract algebra, the number theory, coding theory
and theory of algebraic systems (AS) [1–5].
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2. Some theoretical foundations

The method of decomposition of sets into equivalence classes plays a leading
part in definition of MNS of all types. This method is realized by means
of special relations, and groups, rings or fields are usually used as initial
mathematical structures [6, 7].

Definition 1. Let F be some subset of Cartesian product X×Y of any
two sets X and Y (F ⊆ X×Y). It is said that elements x ∈ X and y ∈ Y

are in relation F if (x, y) ∈ F, and conditional notations F(x, y) or xFy is
used.

Definition 2. If for every x ∈ X there is a unique pair (x, y) ∈ F, then
F is called a function or mapping from X into Y.

Thus, a mapping is set by a triple (X,Y, f), where f is a rule by which
the correspondence between x and y is established. Often a mapping is
denoted as y = f(x) or f : X→ Y.

Definition 3. A mapping f : X→ Y is called to be
1) injective if from f(x1) = f(x2) (x1, x2 ∈ X) it follows that x1 = x2;
2) surjective if f(X) = Y;
3) bijective when conditions 1) and 2) are fulfilled simultaneously.

Definition 4. A binary relation F ⊆ X × X is called an equivalence
relation if the following conditions are satisfied:
• xFx for all x ∈ X (reflexivity);
• x1Fx2 = x2Fx1 for any x1, x2 ∈ X (symmetry);
• from x1Fx2 and x2Fx3 (x1, x2, x3 ∈ X) it follows that x1Fx3

(transitivity);

An equivalence relation will be designated as x ≡ x′ (mod F), where
x, x′ ∈ X.

An equivalence relation F ⊆ X × X separates the set X into disjoint
classes (the equivalence classes or the adjacent classes) which union coincides
with X. All the adjacent classes in the aggregate constitute the so-called
factor set of a set X under equivalence F which is denoted by X/F.

Let [x] be an equivalence class containing the fixed set member x of
a set X:

[x] = {x′ | x′ ≡ x (mod F); x′, x ∈ X}. (1)

Let |x|F be a residue of a class (1) and | · |F be an aggregate of residues of
all classes of a factor set X/F.

Definition 5. A mapping Θ : X→ |·|F, associating a residue |x|F ∈ |·|F
of a class [x] with every x ∈ X, is called the residue modulo F operator.
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3. Algebraic systems

The practical use of one or another AS as a basis for the information process-
ing demands transformation of this system into suitable adequate computer
analogue. It is natural that in the synthesis process of necessary variant
of AS, the technique which ensures conservation of all most essential topo-
logical, algebraic and other properties of initial algebraic system should be
applied [2].

Definition 6. The finite AS is a mathematical structure

S =< M, Ωop, Ωrel >, (2)

where M is some set;

Ωop = {O1, O2, . . . , ONop} and Ωrel = {R1, R2, . . . , RNrel
}

are sets of operations and relations on M, correspondingly, (Nop and Nrel

are numbers of operations and relations, accordingly; Nop ≥ 0; Nrel ≥ 0).
Elements of a set M are named system components; a cardinal number of
a set M is denoted by |M|.

For synthesis of some computer model on the basis of AS S (2), it is
necessary to realize a corresponding codification of the considered system.

Definition 7. Coding S of AS represents an injec-
tive mapping φ : M → A which associates a word
(x1, x2, . . . , xk) ∈ A with each set element X of M.
A set A is the Cartesian product of some sets A1,A2, . . . ,Ak which
are named alphabets; xi ∈ Ai (i = 1, 2, . . . , k); k ≥ 1. The set
C = φ(M) (f(M) ⊆ A) is called a code or code space, its elements
are named code words; a word (x1, x2, . . . , xk) is a code of a set element X,
a symbol xi is the ith digit of X; k is the length of a code.

If cardinal numbers of a code C and a set A satisfy an inequality |C| <
|A|, then the code is redundant. The value

R(C) = 1− log |C|/ log |A|
or similar to it is usually used as a redundancy measure [5].

Definition 8. A mapping φ−1 inverse to coding φ is named decoding.

It is quite obvious that any coding φ : M → (C ⊆ A) of the system S
induces some AS on a code space C

Sφ =< C, Oφ
1 , Oφ

2 , . . . , Oφ
Nop

; R
φ
1 , R

φ
2 , . . . , R

φ
Nrel

> (3)

which has the same type as the initial AS S.
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Codification of AS S assumes that a coding should be an isomorphism of
systems (2) and (3), that is a one-to-one homomorphic mapping conserving
base operations and relations. This means that the following conditions are
fulfilled

Or(X1, X2, . . . , Xmr) = Oφ
r (φ(X1), φ(X2), . . . , φ(Xmr )),

Or(φ
−1(W1), φ−1(W2), . . . , φ−1(Wmr)) = Oφ

r (W1, W2, . . . , Wmr),

Rs(X1, X2, . . . , Xns) = R
φ
s (φ(X1), φ(X2), . . . , φ(Xns)),

Rs(φ
−1(W1), φ−1(W2), . . . , φ−1(Wns)) = R

φ
s (W1, W2, . . . , Wns)

for all

(X1,X2, . . . ,Xmr ) ∈ R
mr , (W1,W2, . . . ,Wmr) ∈ C

mr ,

(X1,X2, . . . ,Xns) ∈ R
ns , (W1,W2, . . . ,Wns) ∈ C

ns ,

r = 1, 2, . . . , Nop; s = 1, 2, . . . , Nrel.

Definition 9. A codifying AS along with execution rules for its base
operations and relations in a code language will be named a number system
(NS). At the same time, the encoded set, i.e. pre-image M of a code C,
will be named a definitional domain or a range of NS, including it in the
conditional designation of a system:

Sφ =< M, C, Oφ
1 , Oφ

2 , . . . , Oφ
Nop

; R
φ
1 , R

φ
2 , . . . , R

φ
Nrel

> .

Groups, rings and fields are usually used as discrete AS which are immediate
objects of codification.

Definition 10. Any additive subgroup P of commutative ring R with
a property (x ∈ P) & (a ∈ R)⇒ xa ∈ P is called an ideal.

Let R be a commutative ring and P be an ideal in it. We will separate
elements of a set R into classes referring elements x and x′ to the same class
if and only if x−x′ ∈ P. Such a partition defines an equivalence relation on
R. The corresponding factor set is a group which is named a factor group
of a ring R and is denoted as R/P. It is evident that multiplication in R

induces the uniquely defined multiplication in a factor group R/P. This
converts it into a factor ring or a ring of residue classes.

Definition 11. An ideal (x) = Rx consisting of all multiple of some
element x of a ring R is named a principal ideal.

Definition 12. An ideal P in a ring R is called a prime ideal if P 6= (1)
and it follows from xy ∈ P that either x ∈ P or y ∈ P.
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Let us define operations on ideals which are necessary for a statement of
the technique of constructing modular number systems. Let P1,P2, . . . ,Pk

(k ≥ 2) be ideals in a commutative ring R. The sum and the product of the
given ideals are defined by the following rules

k∑

i=1

Pi =

{
k∑

i=1

xi | xi ∈ P; i = 1, 2, . . . , k

}
,

k∏

i=1

Pi =

{
L∑

i=1

k∏

n=1

xl,n | xl,n ∈ Pn; n = 1, 2, . . . , k;L ∈ {1, 2, . . . }, L <∞
}

.

We note that intersection of any family of ideals of a ring R, including
k⋂

i=1
Pi, is also an ideal. Operations of addition, multiplication and inter-

section of ideals are associative and commutative. The distributive law for
multiplication with respect to addition is also valid.

The implication of the introduced operations is clearly explained by the
following example.

Example. Let in the ring Z of integers, the ideals P1 = (l) and P2 =
(n), where l and n are natural numbers, be defined. Then P1 + P2 is an
ideal generated by the greatest common divisor (l, n) of numbers l and n,
that is P1 + P2 = ((l, n)). An ideal P1 ∩ P2 is generated by the least
common multiple [l, n] of numbers l and n, that is P1 ∩ P2 = ([l, n]), and
P1P2 = (l, n). At the same time, the equality P1P2 = P1 ∩P2 occures if
and only if l and n are coprime, i.e. ((l, n) = 1).

Definition 13. Ideals P1 and P2 of a ring R for which the condition
P1 + P2 = (1) is satisfied are named coprime ideals.

It is obvious that relative primality of ideals P1 and P2 is equivalent to
existence of elements x ∈ P1 and y ∈ P2 such that x + y = 1.

It should be noted that for cardinals of a finite ring R, its ideal P, and
factor ring R/P the following equality is valid

|R| = |P| |R/P|. (4)

4. The main theorem of modular arithmetic

Let us assume that a set M is a commutative ring and M1,M2, . . . ,Mk

are ideals of this ring (k ≥ 2). We denote by | · |Mi
an aggregate of some

distinguished elements of residue classes (one from each class) of factor rings
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M/Mi (i = 1, 2, . . . , k). The residue modulo operator (see definition 5)
associates with each X ∈ M a unique element of a set | · |Mi

which is
denoted by |X|Mi

. It is quite obvious that the set |X|Mi
is a commutative

ring as well as a factor ring M/Mi.
Let us define a mapping φ : M → | · |M1 × | · |M2 × . . . × | · |Mk

on the
set M acting according to a rule

φ(X) = (|X|M1 , |X|M2 , . . . , |X|Mk
). (5)

As it was stated, φ is a homomorphism induced on the M system

Sφ = < M, | · |M1 ×| · |M2× . . .×| · |Mk
; (+,+, . . . ,+), (·, ·, . . . , ·) > . (6)

As evident from (5), base operations on any X and Y from M in the
system (6) are executed independently component-wise:

φ(X) + φ(Y ) = (|X|M1 , |X|M2 , . . . , |X|Mk
) + (|Y |M1 , |Y |M2 , . . . , |Y |Mk

)

= (|X + Y |M1 , |X + Y |M2 , . . . , |X + Y |Mk
) = φ(X + Y ), (7)

φ(X) · φ(Y ) = (|X|M1 , |X|M2 , . . . , |X|Mk
) · (|Y |M1 , |Y |M2 , . . . , |Y |Mk

)

= (|X · Y |M1 , |X · Y |M2 , . . . , |X · Y |Mk
) = φ(X · Y ). (8)

Expressions (7) and (8) show that the system S (6) is a commutative
ring with unity (1, 1..., 1).

Theorem (The main theorem of modular arithmetic). Let M be a com-
mutative ring and M1,M2, . . . ,Mk be its ideals. Then:

1) if M1, M2, . . . ,Mk are pairwise prime, i.e.

Ml + Mk = (1); (l 6= k; , n ∈ 1, 2, . . . , k), (9)

then
k∏

i=1
Mi =

k⋂
i=1

Mi;

2) a homomorphism φ : M → | · |M1 × | · |M2 × . . . × | · |Mk
defined by

(5) is surjective if and only if (9) is valid;
3) a homomorphism φ is injective if and only if

k⋂

i=1

Mi = (0). (10)

In the proposed technique of constructing the MNS on such mathe-
matical structures as finite groups, rings and Galois fields, the formulated
theorem plays a fundamental role [3].
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5. Technique of constructing a modular number system

According to the main theorem, in the case when the equality (10) is fulfilled
for a ring M and ideals M1, M2, . . . ,Mk, an AS (5) (taking into account
an injective homomorphism generating it) represents an NS (see definition
8) with a range M, the coding (8), the code = |·|M1×|·|M2×. . .×|·|Mk

and
alphabets Ai = | · |Mi

(i = 1, 2, . . . , k). This NS will be called an MNS. At
the same time, ideals M1, M2, . . . ,Mk and, in a case when they are principal
ideals, their generating elements m1, m2, . . . ,mk (Mi = (mi),mi ∈M; i =
1, 2, . . . , k) will be named the modules of an MNS.

In the case Mi = (mi), the notation | · |mi
will be used for

a ring | · |Mi
as well as the notation |X|mi

will be used for a
residue |X|Mi

∈ | · |Mi
. As follows from (7) and (8), the ring

operations on any two elements A and B from M, defined by
their modular codes A = (α1, α2, . . . , αk) and B = (β1, β2, . . . , βk)
(αi = |A|Mi

, βi = |B|Mi
(i = 1, 2, . . . , k)), are executed independently

on each of residues, i.e. according to a rule

A ◦B = (|α1 ◦ β1|M1 , |α2 ◦ β2|M2 , . . . , |αk ◦ βk|Mk
(◦ ∈ {+, ·}). (11)

The internal parallelism of an MNS, consisting in the property (11),
represents the main merit of such systems.

Let M be a finite ring with cardinal N = |M|. According to (7), for each
ideal Mi ⊆ M and a residue ring | · |Mi

corresponding to it, the following
equality is satisfied

N = Ni ni (Ni = |Mi|; ni = || · |Mi
|; i = 1, 2, . . . , k). (12)

Taking into account (12), the foregoing allows us to formulate the fol-
lowing technique for constructing an MNS on a given range M [6, 7].

1. The order N of a ring M is factorized into a product N =
k∏

i=1
ni of

acceptable pairwise prime natural multipliers n1, n2, . . . , nk (k ≥ 2).

2. For every i ∈ {1, 2, . . . , k}, the principal ideal Mi = (mi) with the
order Ni = N/ni is chosen by means of specially selected generating element
mi in M. The element mi always exists. It generates a cyclic additive group
{ki mi | ki = 0, 1, . . . , Ni − 1} which exactly coincides with Mi.

For M1, M2, . . . ,Mk the fulfillment of conditions (9) and (10) is en-
sured.
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3. For principal ideals Mi, the corresponding residue rings | · |Mi
are

constructed so that computer codes of their elements have minimum lengths
in their own adjacent classes.

According to (12), a number of residues in a ring | · |Mi
is equal to ni.

4. For an MNS with modules M1, M2, . . . ,Mk, the computer procedures
of necessary operations in a language of a code C = φ(M) = | · |M1

× | ·
|M2
× . . . × | · |Mk

are synthesized.

Any technique of constructing an MNS along with procedure of creating
a modular code (χ1, χ2, . . . , χk) (χi = |X|Mi

, i = 1, 2, . . . , k) for every
X ∈ M should include some procedure of restoring X according to its
modular code. The Chinese remainder theorem (CRT) is a classical basis for
synthesis of such procedures. According to the CRT, a decoding mapping
φ−1 : | · |M1 × | · |M2 × . . .× | · |Mk

→M in an MNS with modules M1, M2,
. . . ,Mk can be realized in the following constructive form

|X|Mk
=

∣∣∣∣∣

k∑

i=1

Mi,k χi,k

∣∣∣∣∣
Mk

, (13)

where Mk =
k∏

i=1
mi is a generating element of a principal ideal

M̂ = (Mk) =
k∏

i=1
Mi; by |Y |Mk

we denote the element of a residue ring

| · |Mk
= | · |Mk

which is equivalent to Y ∈ M; Mi,k = Mk / mi; χi,k is
a residue of the ring | · |mi

such that

Mi,k χi,k ≡ χi (mod Mi). (14)

In the case when principal ideals (Mi,k) and (mi) are pairwise prime, the
residue χi,k satisfying (14) always exists and is unique. As can be seen from
(13), the CRT establishes a correspondence between words (χ1, χ2, . . . , χk)
of a code C = | · |M1

× | · |M2
× . . .× | · |Mk

and elements |X|M of a residue
ring | · |M. If ideals M1, M2, . . . ,Mk satisfy conditions (9) and (10), then
M/M̂ = M/(0) = M (for every X ∈M the equivalence class [X] ∈M/(0)
contains only X). At the same time, a mapping φ defining an MNS with
modules M1, M2, . . . ,Mk is an isomorphism (a bijective homomorphism)
of range M and code space C (see the theorem). In this case, (13) becomes

X =

∣∣∣∣∣

k∑

i=1

Mi,k χi,k

∣∣∣∣∣
M

. (15)
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6. Redundant modular number systems

The general bases of the developed technique for constructing an MNS on
arbitrary AS can be detailed for the specific classes of MNS which are defined
particularly on real, complex and polynomial ranges [8–10].

In modern applications of an MNS as priority computer-arithmetic base,
it is naturally used the real modular arithmetic (MA). Besides exclusively
great own importance, the real MNS has extreme significance for construct-
ing MA on mathematical structures which possess multidimensional (vecto-
rial) features. Usually, in specified configurations of MA the real MNS plays
a role of a lower level system. Thus, the developed technique, first of all,
should be applied to codification of real ranges.

The presented technique of constructing an MNS on finite rings (see
(1)–(4)) along with the basic requirement (10) for the base ideals M1, M2,
. . . ,Mk imposes on them two additional restrictions (for simplicity): the
pairwise prime condition (9) and a factorization of cardinal N of ring M on
pairwise prime natural multipliers ni fulfilling a role of cardinals of factor
rings M/Mi (i = 1, 2, . . . , k). The main theorem of MA ensures an iso-
morphism between the encoded S and resultant Sφ algebraic systems and
therefore, in view of the fact that C = φ(M) = | · |M1

× | · |M2
× . . .× | · |Mk

,
leads to an irredundant MNS.

In the context of the described technique, for deriving the redundant
MNS with a range M and modules M1, M2, . . . ,Mk, i.e. systems for which

N = |C| < | | · |M1 × | · |M2 × . . .× | · |Mk
| =

k∏

i=1

ni (ni = || · |Mi
|),

it is obviously enough to remove the restriction (9).
However, for optimization of the modular computing structures another

variant of redundant coding is most appropriated. In this case, some subset
D (not necessarily a subring) of initial set M is used as a range in (6). This
leads to a code space C = φ(D) with cardinality |C| < φ(M). A resultant
redundant MNS

Sφ = < D, φ(D) ⊂ | · |M1
× | · |M2

× . . .× | · |Mk
;

(+,+, . . . ,+), (·, ·, . . . , ·) > (16)

is naturally a restriction of initial system (6) and possess all its merits stip-
ulated by parallel structure of a homomorphism φ (see (5)–(8)).
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The main purpose of using the range D with less cardinal number in-
stead of a set M consists in constructing an MNS (16) which has minimum
of redundancy of a code C = φ(D) and gives the base relation for imple-
mentation of decoding mapping φ−1 : C → D which is more simple than
(13) and (15). Let X be an element of the range D and X possess the MC
(χ1, χ2, . . . , χk). Let in the ring M the modules M1, M2, . . . ,Mk of an MNS
(16) be represented by principal ideals generated by elements m1,m2...,mk,
correspondingly. Then, in accordance with the CRT by analogy with (13),
it is possible to write

|X|Mk−1
=

∣∣∣∣∣

k−1∑

i=1

Mi,k−1|M−1
i,k−1χi|mi

∣∣∣∣∣
Mk−1

, (17)

where Mk−1 =
k−1∏
i=1

mi, Mi,k−1 = Mk−1/mi; M−1
i,k−1 is a residue of ring

| · |mi
such that Mi,k−1 M−1

i,k−1 ≡ 1 (mod Mi). It follows from (17) that

X =
k∑

i=1
Mi,k−1|M−1

i,k−1χi|mi
is an element of the principal ideal (Mk−1) =

k−1∏
i=1

(mi). This means that in M there is some element I(X) such that

X =

k−1∑

i=1

Mi,k−1χi,k−1 + I(X)Mk−1. (18)

Definition 14. An integral characteristic of an MC I(X) will be named
an interval index (II) corresponding to a principal ideal (Mk−1) or simply an
interval index, and expression (18) will be called an interval-modular form
(IMF) of an element X.

In contrast to the CRT (13) and (15), the IMF (18) does not contain
operations of a residue modulo M. Therefore, the decoding procedures of the
MC synthesized on its basis are more effective than the procedures realizing
direct implementations of the CRT. At the same time, the maximum effect
is reached in the context of redundant coding, as in this case the computa-
tion of an II I(X) becomes a trivial operation [8, 10]. Similar to redundant
restrictions of the classical MNS, as a range D we will use sets of the form
ZM = {0, 1, . . . ,M − 1} and Z

−1
2M = {−M,−M + 1, . . . ,M − 1}, where

M =
k−1∏
i=0

mi; m0 is the auxiliary natural module selected according to the

condition |D| < |M|, simplicity of the computation of II and execution of
the operations of MA with minimum of coding redundancy.



Construction of modular number systems 115

References

[1] V.M. Amerbaev. Theoretical Bases of Machine Arithmetics. Nauka,
Alma-Ata 1976. (In Russian).

[2] A.I. Maltsev. Algebraic Systems. Nauka, Moscow 1970. (In Russian).

[3] M. Atghia, I. McDonald. Introduction to Commutative Algebra. Mir,
Moscow 1972. (In Russian).

[4] I.M. Vinogradov. Elements of Number Theory. Nauka, Moscow 1981.
(In Russian).

[5] T. Kasami, N. Tokura, E. Ivodari, J. Inagati. Coding Theory. Mir,
Moscow 1978. (In Russian).

[6] A.A. Kolyada, V.V. Revinsky, M.Y. Selyaninov et al. Elements of the
theory and applications of modular technique of parallel information
processing. Modern Problems of Optics, Radiation Materials Science,
Informatics, Radiophysics and Electronics. Proc. Sci. Research Inst.
Appl. Phys. Probl. Belgosuniversitet, Minsk, vol. 2, pp. 1–51, 1996.
(In Russian).

[7] M.Y. Selyaninov. Theoretical bases of modular codification of alge-
braic systems. Proc. Nat. Acad. Sci. Belarus, No. 1, 114–119, 2002.
(In Russian).

[8] A.F. Chernyavsky, V.V. Danilevich, A.A. Kolyada, M.Y. Selyaninov.
High-speed Methods and Systems of Digital Information Processing.
Belgosuniversitet, Minsk 1996. (In Russian).

[9] M.Y. Selyaninov. Application of numerically-analytical modular com-
puting techniques for performance of additive and multiplicative oper-
ations over signals in spaces of orthogonal projections. Rep. Nat. Acad.
Sci. Belarus, 46, No. 2, 62–66, 2002. (In Russian).

[10] M. Selyaninov M. Modular technique of parallel information process-
ing. Scientific Issues of Jan Długosz University of Czestochowa, Ser.
Mathematics, XIII, 43–52, 2008.


