Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The first part of this work is a brief (application-oriented) review of the different classes of multiphase flow models. The review starts with the most generic approaches and descends to the class of Homogeneous Relaxation Models (HRM) of two-phase flow. Subsequently, this work presents a detailed review of the developed relaxation equations describing nonequilibrium mass transfer in two-phase flows. Some of the reviewed equations (in particular, the closure equations of HRMs) have quite simple mathematical structures but there are indications that they should be, in a specific way, more complex. Consequently, the main aim of this article is to bring attention to this problem and expose its nature and practical importance. The analyses conducted in this study reveal that relaxation closure equations formulated as advection equations may disrupt the phase space structure of the model, whereas equations formulated as phasic mass conservation do not pose such an issue. This distinction arises from the presence of a greater number of gradients in the conservation equations (a minimum of two, compared to potentially just one in an advection equation), rendering the conservation equations mathematically more complex.
Czasopismo
Rocznik
Tom
Strony
526--535
Opis fizyczny
Bibliogr. 48 poz., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
Bibliografia
- 1. Saha P. Review of two-phase steam-water critical flow models with emphasis on thermal nonequilibrium.1977; NUREG/CR-0417. United States.
- 2. Richter HJ. Separated two-phase flow model: application to critical two-phase flow. International Journal of Multiphase Flow. 1983; 9(5): 511-530. ISSN 0301-9322. https://doi.org/10.1016/0301-9322(83)90015-0
- 3. Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow. 1975. Second Edition. Springer.
- 4. Staedtke H. Gasdynamic Aspects of Two-Phase Flow: Hyperbolicity, Wave Propagation Phenomena and Related Numerical Methods. Wiley-VCH. 1st edition (October 6, 2006).
- 5. Baer MR, Nunziato, JW. A two-phase mixture theory for the deflagra-tion-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow. 1986;12: 861–889.
- 6. Zhang C, Menshov I, Wang L, Shen Z. Diffuse interface relaxation model for two-phase compressible flows with diffusion processes. Journal of Computational Physics. 2022; 466: 111356. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2022.111356
- 7. Bdzil JB, Menikoff R, Kapila AK, Stewart DS. Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues. Physics of fluids. 1999; 11: 2; 378-402. https://doi.org/10.1063/1.869887
- 8. Kapila AK , Menikoff R, Bdzil JB, Stewart DS. Two-phase modeling of deflagration-to-detonation transition in granular materials: Re-duced equations. Physics of fluids. 2001;13(10):3002-3024. https://doi.org/10.1063/1.1398042
- 9. Pelanti M. Arbitrary-rate relaxation techniques for the numerical modeling of compressible two-phase flows with heat and mass trans-fer. International Journal of Multiphase Flow. 2022;153:104097. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104097
- 10. Saurel R, Petitpas F, Abgrall R. Modelling phase transition in meta-stable liquids: application to cavitating and flashing flows. Journal of Fluid Mechanics. 2008;60:313–350. https://doi.org/10.1017/S0022112008002061
- 11. LeMartelot S, Nkonga B, Saurel R, Liquid and liquid-gas flows at all speeds. Journal of Computational Physics 255. 2013;53–82. https://doi.org/10.1016/j.jcp.2013.08.001
- 12. Lund H, Aursand P. Two-Phase Flow of CO2 with Phase Transfer. Energy Procedia. 2012;23:246-255. ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2012.06.034
- 13. Le Martelot S, Saurel R, Nkonga B. Towards the direct numerical simulation of nucleate boiling flows. International Journal of Multi-phase Flow. 2014;66:62-78. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.010
- 14. Saurel R, Boivin P, Le Métayer O. A general formulation for cavitat-ing, boiling and evaporating flows. Computers & Fluids. 2016; 128: 53-64, ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2016.01.004
- 15. Chiapolino A, Boivin P, Saurel. A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows. Computers & Fluids. 2017; 150: 31-45. ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2017.03.022
- 16. Demou AD, Scapin N, Pelanti M, Brandt L. A pressure-based diffuse interface method for low-Mach multiphase flows with mass transfer. Journal of Computational Physics. 2022;448:110730. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2021.110730
- 17. Stewart HB, Wendroff B. Two-phase flow: models and methods. Journal of Computational Physics. 1984;56(3):363-409.
- 18. Bilicki Z, Kestin J. Physical aspects of the relaxation model in two-phase flow. Proceedings of the Royal Society of London. A. Mathe-matical and Physical Sciences. 1990;428(1875):379-397.
- 19. Downar-Zapolski P, Bilicki Z, Bolle L, Franco J. The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Internation-al Journal of Multiphase Flow. 1996;22(3): 473-483. ISSN 0301-9322. https://doi.org/10.1016/0301-9322(95)00078-X
- 20. Atkins P, de Paula J. Physical Chemistry. 2006; 8th ed. W.H. Free-man: 805-7. ISBN 0-7167-8759-8
- 21. Einstein A. Schallausbreitung in teilweise dissoziierten Gasen [Sound propagation in partly dissociated gases]: 380-385.
- 22. Mandelshtam, LI, Leontovich EM. A theory of sound absorption in liquids. Zh. Exp. Teor Fiz. 1937;7:434-449 (in Russian).
- 23. Bauer EG, Houdayer, GR, Sureau HM. A non-equilibrium axial flow model in application to loss-of-coolant accident analysis. The CYS-TERE system code. OECD/NEA Specialist Meeting on Transient Two-phase Flow. 1976. Toronto Canada.
- 24. Angielczyk W, Bartosiewicz Y, Butrymowicz D, Seynhaeve J-M. 1-D modelling of supersonic carbon dioxide two-phase flow through ejec-tor motive nozzle. International Refrigeration and Air Conditioning Conference. 2010. Purdue USA.
- 25. Haida M, Smolka J, Hafner A, Palacz M, Banasiak K, Nowak AJ. Modified homogeneous relaxation model for the R744 transcritical flow in a two-phase ejector, International Journal of Refrigeration. 2018;85:314-333. ISSN 0140-7007. https://doi.org/10.1016/j.ijrefrig.2017.10.010
- 26. Feburie V, Giot M, Granger S, Seynhaeve J. A model for choked flow through cracks with inlet subcooling. International Journal of Multi-phase Flow. 1993;19(4):541–562. https//doi:10.1016/0301-9322(93)90087-b
- 27. Attou A, Seynhaeve JM. Steady-state critical two-phase flashing flow with possible multiple choking phenomenon. Part 1: physical model-ling and numerical procedure. Journal of Loss Prevention in the In-dustries. 1999;12:335-345. https://doi.org/10.1016/S0950-4230(98)00017-5
- 28. De Lorenzo M, Lafon P, Seynhaeve JM, Bartosiewicz Y. Bench-mark of Delayed Equilibrium Model (DEM) and classic two-phase critical flow models against experimental data. International Journal of Multiphase Flow. 2017;92:112-130. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.004
- 29. Angielczyk W, Bartosiewicz Y, Butrymowicz D. Development of Delayed Equilibrium Model for CO2 convergent-divergent nozzle transonic flashing flow. International Journal of Multiphase Flow. 2020;131:103351. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103351
- 30. Tammone C, Romei A, Persico G, Haglind F. Extension of the de-layed equilibrium model to flashing flows of organic fluids in converg-ing-diverging nozzles. International Journal of Multiphase Flow. 2024; 171:104661. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2023.104661
- 31. Ambroso A, Hérard J-M, Hurisse O. A method to couple HEM and HRM two-phase flow models. Computers & Fluids. 2009;38(4):738-756, ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2008.04.016
- 32. Palacz M, Haida M, Smolka J, Nowak AJ, Banasiak K, Hafner A. HEM and HRM accuracy comparison for the simulation of CO2 ex-pansion in two-phase ejectors for supermarket refrigeration systems. Applied Thermal Engineering. 2017;115:160-169. ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2016.12.122
- 33. James F, Mathis H. A relaxation model for liquid-vapor phase change with metastability. 2015 arXiv preprint arXiv:1507.06333. https://doi.org/10.48550/arXiv.1507.06333
- 34. De Lorenzo M, Lafon Ph, Pelanti M. A hyperbolic phase-transition model with non-instantaneous EoS-independent relaxation proce-dures. Journal of Computational Physics. 2019;379: 279-308. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2018.12.002
- 35. De Lorenzo M, Lafon Ph, Pelanti M, Pantano A, Di Matteo M, Bar-tosiewicz Y, Seynhaeve JM. A hyperbolic phase-transition model coupled to tabulated EoS for two-phase flows in fast depressuriza-tions. Nuclear Engineering and Design. 2021;371:110954. ISSN 0029-5493. https://doi.org/10.1016/j.nucengdes.2020.110954
- 36. Ward CA. The rate of gas absorption at a liquid interface. The Jour-nal of Chemical Physics. 1977; 67(1): 229-235. https://doi.org/10.1063/1.434547
- 37. Ward CA, Findlay RD, Rizk M. Statistical rate theory of interfacial transport. I. Theoretical development. The Journal of Chemical Phys-ics. 1982;76(11):5599-5605. https://doi.org/10.1063/1.442865
- 38. Ward CA, Fang G. Expression for predicting liquid evaporation flux: Statistical rate theory approach. Physical Review. 1999;59(1): 429. https://doi.org/10.1103/PhysRevE.59.429
- 39. Schrage RW. A theoretical study of interphase mass transfer. 1953. Columbia University Press. https://doi.org/10.7312/schr90162
- 40. Banasiak K, Hafner A. 1D Computational model of a two-phase R744 ejector for expansion work recovery. International Journal of Thermal Sciences. 2011;50(11):2235-2247. ISSN 1290-0729. https://doi.org/10.1016/j.ijthermalsci.2011.06.007
- 41. Bodys J, Smolka J, Palacz M, HaidaM, Banasiak K. Non-equilibrium approach for the simulation of CO2 expansion in two-phase ejector driven by subcritical motive pressure. International Journal of Refrig-eration. 2020;114:32-46. ISSN 0140-7007. https://doi.org/10.1016/j.ijrefrig.2020.02.015
- 42. Bodys J, Smolka J, Palacz M, Haida M, Banasiak K, Nowak AJ. Effect of turbulence models and cavitation intensity on the motive and suction nozzle mass flow rate prediction during a non-equilibrium expansion process in the CO2 ejector. Applied Thermal Engineering. 2022;201:117743, ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2021.117743
- 43. Bilicki Z, Dafermos C, Kestin J, Majda G, Zeng DL. Trajectories and singular points in steady-state models of two-phase flows. Interna-tional journal of multiphase flow. 1987; 13(4): 511-533.
- 44. De Sterck H. Critical point analysis of transonic flow profiles with heat conduction. SIAM Journal on Applied Dynamical Systems. 2007; 6(3): 645-662. https://doi.org/10.1137/060677458
- 45. Angielczyk W, Bartosiewicz Y, Butrymowicz , Seynhaeve, JM. 1-D modeling of supersonic carbon dioxide two-phase flow through ejec-tor motive nozzle. International Refrigeration and Air Conditioning Conference. 2010.
- 46. Angielczyk W, Śmierciew K, Butrymowicz D. Application of a fast transonic trajectory determination approach in 1-D modelling of steady-state two-phase carbon dioxide flow. In E3S Web of Confer-ences. 2019; 128: 06005, EDP Sciences. https://doi.org/10.1051/e3sconf/201912806005
- 47. Angielczyk W, Seynhaeve JM, Gagan J, Bartosiewicz Y, Butry-mowicz D. Prediction of critical mass rate of flashing carbon dioxide flow in convergent-divergent nozzle. Chemical Engineering and Pro-cessing - Process Intensification. 2019; 143: 107599. ISSN 0255-2701. https://doi.org/10.1016/j.cep.2019.107599
- 48. Angielczyk W, Butrymowicz D. Revisiting the relaxation equations describing nonequilibrium mass transfer in the transonic homogene-ous flashing flow models. Postępy w badaniach wymiany ciepła i ma-sy: Monografia Konferencyjna XVI Sympozjum Wymiany Ciepła I Masy. 2022; 113-123. Białystok. Oficyna Wydawnicza Politechniki Białostockiej. ISBN 978-83-67185-30-1. https://doi.org/10.24427/978-83-67185-30-1_13
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64a4df5f-feb0-44d1-af65-3e3143073927