PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of the AHP method for preference determination in yacht design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A sailing yacht is a human-centred product, the design of which revolves primarily around the wants and desires of the future owner. In most cases, these preferences are not measurable, such as a personal aesthetic feeling, or a need for comfort, speed, safety etc. The aims of this paper are to demonstrate that these preferences can be classified and represented numerically, and to show that they are correlated with the type of yacht owned. As a case study, the owner’s preferences for deck equipment are considered. These are determined by pairwise comparisons of the importance rankings for features previously defined by yacht owners, following the analytic hierarchy process (AHP) method. As a result, a quantitative representation of these preferences is established, and they are shown to be correlated with the type of yacht. The findings of the current study show that the yacht owners’ preferences can be represented numerically, leading to a utilitarian conclusion that concerns the support and even some degree of automation of the design process.
Rocznik
Tom
Strony
24--30
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Institute of Naval Architecture, Gdansk, Poland
  • Gdansk University of Technology, Institute of Naval Architecture, Gdansk, Poland
  • Gdansk University of Technology, Institute of Naval Architecture, Gdansk, Poland
Bibliografia
  • 1. G. Di Bucchianico and A. Vallicelli, “User-centered approach for sailing yacht design,” in Human Factors and Ergonomics in Consumer Product Design, vol. 2, W. Karwowski, M. Soares, and N. Stanton, Eds., 2011, pp. 445–463.
  • 2. S. Tavakoli, D. Khojasteh, M. Haghani, and S. Hirdaris, “A review on the progress and research directions of ocean engineering,” Ocean Engineering, vol. 272, p. 113617, Mar. 2023, doi: 10.1016/j. oceaneng.2023.113617.
  • 3. T. Song, T. Tan, and G. Han, „Research on preventive maintenance strategies and systems for in-service ship equipment,” Polish Maritime Research, vol. 29, no. 1, pp. 85–96, Mar. 2022, doi: 10.2478/pomr-2022-0009.
  • 4. A. Mancuso, A. Saporito, and D. Tumino, “Parametric hull design with rational Bézier curves,” in Lecture Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH, 2021, pp. 221–227 doi: 10.1007/978-3-030-70566-4_36.
  • 5. S. Khan, E. Gunpinar, K. M. Dogan, B. Sener, and P. Kaklis, “ModiYacht: Intelligent CAD tool for parametric, generative, attributive and interactive modelling of yacht hull forms,” in SNAME 14th International Marine Design Conference, IMDC 2022, Society of Naval Architects and Marine Engineers, 2022, doi: 10.5957/IMDC-2022-311.
  • 6. J. R. Binns and P. A. Brandner, “Dynamic interaction of breaking waves and inverted sailing yachts: Explaining the efficacy of mast height retention relative to vertical centre of gravity,” Ocean Engineering, vol. 35, no. 17–18, pp. 1759–1768, Dec. 2008, doi: 10.1016/j.oceaneng.2008.08.013.
  • 7. G. Guelfi and E. Canepa, “New development in 6-DOF algorithms for sailing yacht velocity prediction program and new insight in appendages force modelling,” Master’s Degree in Nautical Engineering, 2013.
  • 8. C. A. Marchaj, Aero-Hydrodynamics of Sailing. Adlard Coles Nautical, 2000.
  • 9. B. Augier, P. Bot, F. Hauville, and M. Durand, “Dynamic behaviour of a flexible yacht sail plan,” Ocean Engineering, vol. 66, pp. 32–43, 2013, doi: 10.1016/j.oceaneng.2013.03.017.
  • 10. T. Matulja, L. Jedretić, and M. Hadjina, “Influence analysis of deck equipment positioning on performances in sailing,” pp. 101–109.
  • 11. C. M. Rizzo and D. Boote, “Scantling of mast and rigging of sail boats: A few hints from a test case to develop improved design procedures,” 2010.
  • 12. M. Pawłusik, R. Szłapczyński, and A. Karczewski, “Optimising rig design for sailing yachts with evolutionary multi-objective algorithm,” Polish Maritime Research, vol. 27, no. 4, pp. 36–49, Dec. 2020, doi: 10.2478/pomr-2020-0064.
  • 13. W. Karwowski, M. M. Soares, and N. A. Stanton, “Human factors and ergonomics in consumer product design uses and applications,” CRC Press. 2011.
  • 14. N. Kalkan, “Human factors and ergonomic considerations for super-fast boat design,” 2015. [Online]. Available: http:// mybroadband.co.za/photos/showfull.
  • 15. S. Ö. Felek, “Parametric sailing yacht exterior and interior design,” 2020, doi: 10.14744/tasarimkuram.2019.30085.
  • 16. D. Harris, S. Mccartan, B. Verheijden, H. Groningen, and M. Lundh, “European Boat Design Innovation Group: The marine design manifesto. Human factors in safety management systems view project next generation civil flight deck concepts view project,” 2014. [Online]. Available: https:// www.researchgate.net/publication/280065046.
  • 17. M. Bilski, “Selected Human Factors in Marina Design,” Procedia Manuf., vol. 3, pp. 1646–1653, 2015, doi: 10.1016/j. promfg.2015.07.482.
  • 18. T. Bosma, “A human factor’s approach to mega yacht concept design,” Master of Philosophy, University of Strathclyde, Glasgow, 2013.
  • 19. R. Gill, “Approaches to design,” Des. Stud., vol. 1, no. 3, pp. 141–145, Jan. 1980, doi: 10.1016/0142-694X(80)90020-4.
  • 20. P. von Buelow, ‘Using Evolutionary algorithms to aid designer of architectural structures,” in Creative Evolutionary Systems, Elsevier, 2002, pp. 315–336. doi: 10.1016/ B978-155860673-9/50050-1.
  • 21. L. Larson, R. E. Eliasson, and M. Orych, Podstawy Projektowania Jachtów, 4th ed., vol. 1. Warszawa: Almapress, 2014.
  • 22. B. Branowski, M. Zabłocki, P. Kurczewski, and A. Walczak, „Selected issues in universal design of yachts for people with disabilities,” Polish Maritime Research, vol. 28, no. 3, pp. 4–15, Sep. 2021, doi: 10.2478/pomr-2021-0030.
  • 23. E. Miszewska, M. Niedostatkiewicz, and R. Wisniewski, “The selection of anchoring system for floating houses by means of AHP method,” Buildings, vol. 10, no. 4, Apr. 2020, doi: 10.3390/BUILDINGS10040075.
  • 24. M. Naujok, Boat Interior Construction: A Bestselling Guide to DIY Interior Boatbuilding, 2nd ed., vol. 1. Adlard Coles Nautical, 2002.
  • 25. T. L. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation (Decision Making Series), vol. 1. McGraw-Hill, 1980.
  • 26. W. C. H. Beck, A. Prusak, and P. Stefanów, “Budowa i analiza modeli decyzyjnych krok po kroku AHP-analityczny proces hierarchiczny,” 2014.
  • 27. G. Khatwani and A. K. Kar, “Improving the cosine consistency index for the analytic hierarchy process for solving multicriteria decision making problems,” Applied Computing and Informatics, vol. 13, no. 2, pp. 118–129, Jul. 2017, doi: 10.1016/j.aci.2016.05.001.
  • 28. A. Jozaghi et al., “A comparative study of the AHP and TOPSIS techniques for dam site selection using GIS: A case study of Sistan and Baluchestan Province, Iran,” Geosciences (Switzerland), vol. 8, no. 12, Dec. 2018, doi: 10.3390/ geosciences8120494.
  • 29. F. de Felice and A. Petrillo, “Absolute measurement with analytic hierarchy process: A case study for Italian racecourse,” International Journal of Applied Decision Sciences, vol. 6, no. 3, p. 209, 2013, doi: 10.1504/IJADS.2013.054931.
  • 30. F. de Felice and A. Petrillo, “Multicriteria approach for process modelling in strategic environmental management planning,” International Journal of Simulation and Process Modelling, vol. 8, no. 1, p. 6, 2013, doi: 10.1504/IJSPM.2013.055190.
  • 31. J. Benítez, X. Delgado-Galván, J. Izquierdo, and R. Pérez-García, “Improving consistency in AHP decision-making processes,” Appl. Math. Comput., vol. 219, no. 5, pp. 2432–2441, Nov. 2012, doi: 10.1016/j.amc.2012.08.079.
  • 32. J. Krejčí and J. Stoklasa, “Aggregation in the analytic hierarchy process: Why weighted geometric mean should be used instead of weighted arithmetic mean,” Expert Syst. Appl., vol. 114, pp. 97–106, Dec. 2018, doi: 10.1016/j.eswa.2018.06.060.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-649d16b3-dc66-46d7-8e24-5f49b4299bdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.