PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prompt gamma-ray methods for industrial process evaluation : a simulation study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Radioisotope applications in industrial process inspection and evaluation using gamma-ray emitters provide otherwise unavailable information. Offering alternative gamma-ray sources can support the technology by complementing sources’ availability and radiation safety. This work proposes to replace gamma-ray from radioisotopes with prompt gamma-ray from the interaction of neutrons with stable isotopes injected into the industrial process or with the structural material of the industrial process equipment. Monte Carlo N-Particle Transport Code (MCNP5) was used to simulate the irradiation of two-phase fl ow pipes by 252Cf neutron source. Two simulations were run for each pipe, with and without mixing the liquid phase with the stable isotope 157Gd. The detected gamma-ray spectra were analysed, and images of the two phases inside the pipes were produced. The images were compared to images obtained from simulations of gamma transmission measurement using 60Co. Furthermore, results for prompt gamma computed tomography (CT) were presented and discussed. The studies’ outcomes indicate the potential of prompt gamma-ray to carry out the sealed sources applications of gamma transmission measurements and imaging.
Czasopismo
Rocznik
Strony
11--18
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • King Abdulaziz University Department of Nuclear Engineering P. O. Box 80204, Jeddah, 21589, Saudi Arabia
  • King Abdulaziz University Department of Nuclear Engineering P. O. Box 80204, Jeddah, 21589, Saudi Arabia
  • King Abdulaziz University Department of Nuclear Engineering P. O. Box 80204, Jeddah, 21589, Saudi Arabia
  • King Abdulaziz University Department of Nuclear Engineering P. O. Box 80204, Jeddah, 21589, Saudi Arabia
  • King Abdulaziz University Department of Nuclear Engineering P. O. Box 80204, Jeddah, 21589, Saudi Arabia
  • King Abdulaziz University Department of Nuclear Engineering P. O. Box 80204, Jeddah, 21589, Saudi Arabia
Bibliografia
  • 1. Mohd Yunos, M. A. S., Hussain, S. A., Mohamed Yusoff, H., & Abddullah, J. (2016). Industrial radiotracer technology for process optimizations in hemical industries – A review. Pertamika J. Scholarly Res. Rev., 2(3), 20–46. https://core.ac.uk/download/pdf/234560224.pdf.
  • 2. Othman, N., & Kamarudin, S. K. (2014). Radiotracer technology in mixing processes for industrial applications. Sci. World J., 2014, 1–15. DOI: 10.1155/2014/768604.
  • 3. Thyn, J., & Zitny, R. (2004). Radiotracer applications for the analysis of complex flow structure in industrial apparatuses. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 213, 339–347. DOI: 10.1016/S0168-583X(03)01648-3.
  • 4. Eapenm, A. C., Raom, S. M., Agashem, S. M., Ajmera, R. L., & Yelgaonkar, V. N. (1990). Radiotracer applications in steel, petroleum and maritime industries with significant economic benefits.Isot. Environ. Health Stud., 26(9), 424–429. DOI: 10.1080/10256019008624349.
  • 5. Mohd Yunos, M. A. S., Sipaun, S. M., & Hussain,S. A. (2019). Feasibility of using radioactive particletracking as an alternative technique for experimental investigation in bubble column reactor. IOP Conf. Ser. Mater. Sci. Eng., 554, 012005. DOI: 10.1088/1757-899X/554/1/012005.
  • 6. Lin, J. S., Chen, M. M., & Chao, B. T. (1985). A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds. AIChE J., 31(3), 465–473. DOI: 10.1002/aic.690310314.
  • 7. Vieira, W. S., Brandão, L. E. B., & Braz, D. (2014). An alternative method for tracking a radioactive particle inside a fluid. Appl. Radiat. Isot., 85, 139–146. DOI: 10.1016/j.apradiso.2013.12.006.
  • 8. International Atomic Energy Agency. (2008). Industrial process gamma tomography. Vienna: IAEA. (IAEATECDOC-1589). Available from https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1589_web.pdf.
  • 9. Wang, M. (2015). Industrial tomography. Elsevier.https://doi.org/10.1016/C2013-0-16466-5.
  • 10. Abdullah, J. (2005). Gamma-ray scanning for troubleshooting, optimisation and predictive maintenance of distillation columns. Hydrocarbon Asia, 1/2, 62–65. https://scanningtech.com/PDF/article3.pdf.
  • 11. Haraguchi, M. I., Kim, H. Y., Sprenger, F. E., & Calvo, W. A. P. (2012). Industrial equipment troubleshooting with imaging technique improved gamma-ray absorption scans. J. Phys. Sci. Appl., 2(8), 359–371.
  • 12. Suma, T., Yelgaonkar, V. N., Tiwari, C. B., & Dhakar, V. D. (2016). Detection of interfaces and voids in pipelines using gamma scanning. IOSR J. Appl. Phys., 8(04), 12–26. DOI: 10.9790/4861-0804011226.
  • 13. Askari, M., Taheri, A., Mojtahedzadeh Larijani, M., Movafeghi, A., & Faripour, H. (2019). A gamma-ray tomography system to determine wax deposition distribution in oil pipelines. Rev. Sci. Instrum., 90(7), 075103. DOI: 10.1063/1.5095859.
  • 14. Saengchantr, D., Srisatit, S., & Chankow, N. (2019). Development of gamma ray scanning coupled with computed tomographic technique to inspect a broken pipe structure inside laboratory scale vessel. Nucl. Eng. Technol., 51(3), 800–806. DOI: 10.1016/j.net.2018.12.022.
  • 15. Zain, R. M., Yahya, R., Rahman, M. F., & Yusof, N. M. (2015). Neutron imaging system for level interface measurement. In Malaysia International NDT Conference & Exhibition 2015 (MINDTCE-15), November 2015, pp. 22–24. https://www.ndt.net/events/MINDTCE-15/app/content/Paper/26_Zain.pdf.
  • 16. Zain, R. M., Ithnin, H., Razali, A. M., Yusof, N. H. M., Mustapha, I., Yahya, R., Othman, N., & Rahman, M. F. A. (2017). Slow neutron mapping technique for level interface measurement. AIP Conf. Proc., 1799, 050004. DOI: 10.1063/1.4972938.
  • 17. Bishnoi, S., Sarkar, P., Thomas, R., Patel, T., & Gadkari, S. (2016). Fast neutron radiography with DT neutron generator. Non-Destruct. Eval., 22, 68–73.
  • 18. Bishnoi, S., Thomas, R. G., Sarkar, P. S., Datar, V. M., & Sinha, A. (2015). Simulation study of fast neutron radiography using GEANT4. J. Instrum., 10(02), P02002–P02002. DOI: 10.1088/1748-0221/10/02/P02002.
  • 19. International Atomic Energy Agency. (2008). Neutron imaging: A non-destructive tool for materials testing. Vienna: IAEA. Available from https://www-pub.iaea. org/MTCD/Publications/PDF/te_1604_web.pdf.
  • 20. Schillinger, B. (2019). An affordable image detector and a low-cost evaluation system for computed tomography using neutrons, X-rays or visible light.Quantum Beam Sci., 3(4), 21. DOI: 10.3390/qubs3040021.
  • 21. Hasan, N. M., Zain, R. M., Abdul Rahman, M. F., & Mustapha, I. (2009). The use of a neutron backscatter technique for in-situ water measurement in paper-recycling industry. Appl. Radiat. Isot., 67(7/8), 1239–1243. DOI: 10.1016/j.apradiso.2009.02.020.
  • 22. Bell, A. R., McRae, G., Wassenaar, R., & Wells, G. (2011). Neutron activation for planar and SPECT imaging. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro, March 2011, pp. 1801–1804. DOI: 10.1109/ISBI.2011.5872756.
  • 23. Kim, M. -S., Shin, H. -B., Choi, M. -G., Monzen, H., Shin, J. G., Suh, T. S., & Yoon, D. -K. (2020). Reference based simulation study of detector comparison for BNCT-SPECT imaging. Nucl. Eng. Technol., 52(1), 155–163. DOI: 10.1016/j.net.2019.07.002.
  • 24. X-5 Monte Carlo Team. (2008). MCNP – A General Monte Carlo N-Particle Transport Code, Version 5. Volume I: Overview and theory. Los Alamos National Security, LLC. Available from https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf.
  • 25. Hart, T. (2015). Neutron backscatter versus gamma transmission analysis for coke drum applications. Thermo Scientific. Available from http://tools. thermofisher.com/content/sfs/brochures/EPMANCoker-0215.pdf.
  • 26. Licata, M., Aspinall, M. D., Bandala, M., Cave, F. D., Conway, S., Gerta, D., Parker, H. M. O., Roberts, N. J., Taylor, G. C., & Joyce, M. J. (2020). Depicting corrosion-born defects in pipelines with combined neutron/γ ray backscatter: a biomimetic approach. Sci. Rep., 10(1), 1486. DOI: 10.1038/s41598-020-58122-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6493cad4-93e5-4832-b6a4-acf323a162eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.