PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scanning Electron Microscopy as a Tool for Castings Quality Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, the best castings’ manufacturers have to meet very demanding requirements and specifications applicable to mechanical properties and other characteristics. To fulfill those requirements, more and more sophisticated methods are being used to analyze the internal quality of castings. In many cases, the commonly used Non-Destructive Methods, like X-ray or ultrasonic testing, are not enough to ensure precise and unequivocal evaluation. Especially, when the properties of the casting only slightly fail the specification and the reasons for such failures are very subtle, thus difficult to find without the modern techniques. The paper presents some aspects of such an approach with the use of Scanning Electron Microscopy (SEM) to analyze internal defects that can critically decrease the performance of castings. The paper presents the so-called bifilm defects in ductile and chromium cast iron, near-surface corrosion caused by sulfur, micro-shrinkage located under the risers, lustrous carbon precipitates, and other microstructure features. The method used to find them, the results of their analysis, and the possible causes of the defects are presented. The conclusions prove the SEM is now a powerful tool not only for scientists but it is more and more often present in the R&D departments of the foundries.
Rocznik
Strony
53--61
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Department of Foundry Engineering, Silesian University of Technology, Gliwice, Poland
autor
  • Department of Foundry Engineering, Silesian University of Technology, Gliwice, Poland
autor
  • Department of Foundry Engineering, Silesian University of Technology, Gliwice, Poland
autor
  • ODLEWNIA RAFAMET, Kuźnia Raciborska, Poland
Bibliografia
  • [1] Mehta, N.D., Gohil, A.V. & Doshi, J.S. (2018). Innovative support system for casting defect analysis – a need of time. Materials Today: Proceedings. 5, 4156-4161. DOI: 10.1016/j.matpr.2017.11.677.
  • [2] Petrus, Ł., Bulanowski, A., Kołakowski, J., Brzeżański, M., Urbanowicz, M., Sobieraj, J., Matuszkiewicz, G., Szwalbe, L. & Janerka, K. (2020). The influence of selected melting parameters on the physical and chemical properties of cast iron. Archives of Foundry Engineering. 1, 105-110. DOI: 10.24425/afe.2020.131290.
  • [3] Garbacz-Klempka, A., Karczmarek, Ł., Kwak, Z., Kozana, J., Piękoś, M., Perek-Nowak, M. & Długosz, P. (2018). Analysis of a castings quality and metalworking technology. Treasure of the bronze age axes. Archives of Foundry Engineering. 3, 179-185. DOI: 10.24425/123622.
  • [4] Bogner, A., Jouneau, P.-H., Thollet, G., Basset, D. & Gauthier, C. (2007). A history of scanning electron microscopy developments: Towards ‘‘wet-STEM’’ imaging. Micron. 38, 390–401. DOI: 10.1016/j.micron.2006.06.008.
  • [5] Kalandyk, B., Zapała, R., Sobula, S. & Tęcza, G. (2019). The effect of CaSiAl modification on the non-metallic inclusions and mechanical properties of low-carbon microalloyed cast steel. Archives of Foundry Engineering. 1, 47-52. DOI: 10.24425/afe.2018.125190.
  • [6] Gawdzińska, K. (2017). Methods of the detection and identification of structural defects in saturated metallic composite castings. Archives of Foundry Engineering. 3, 37- 44. DOI: 10.1515/afe-2017-0087.
  • [7] Nicoletto, G., Konecna, R. & Fintova, S. (2012). Characterization of microshrinkage casting defects of Al–Si alloys by X-ray computed tomography and metallography. International Journal of Fatigue. 41, 39-46. DOI: 10.1016/j.ijfatigue.2012.01.006.
  • [8] Li, J., Chen, R., Ma, Y. & Ke, W. (2014). Characterization and prediction of microporosity defect in sand cast WE54 alloy castings. Journal of Materials Science & Technology. 30(10), 991-997. DOI: 10.1016/j.jmst.2014.03.011.
  • [9] Velasco, E., Rodríguez, A., González, J.A., Talamantes, J., Colás, R. & Valtierra, S. (2003). Use of microscopical techniques in failure analysis and defect control in automotive castings. microscopy and microanalysis 9 (Suppl 2), 160-161. DOI: 10.1017/S1431927603440713.
  • [10] Staude, A., Bartscher, M., Ehrig, K., Goebbels, J., Koch, M., Neuschaefer-Rube, U. & Notel, J. (2011). Quantification of the capability of micro-CT to detect defects in castings using a new test piece and a voxel-based comparison method. NDT&E International. 44, 531-536.
  • [11] Bovas Herbert Bejaxhin, A., Paulraj, G. & Prabhakar, M. (2019). Inspection of casting defects and grain boundary strengthening on stressed Al6061 specimen by NDT method and SEM micrographs. Journal of Materials Research Technology. 8(3), 2674-2684. DOI: 10.1016/j.jmrt.2019.01.029.
  • [12] Haguenau, F., Hawkes, P. W., Hutchison, J.L., Satiat-Jeunemaître, B., Simon, G. T. & Williams, D. B. (2003). Key events in the history of electron microscopy. Microscopy and Microanalysis. 9, 96-138. DOI: 10.1017/S1431927603 030113.
  • [13] Davut, K., Yalcin, A. & Cetin, B. (2017). Multiscale microstructural analysis of austempered ductile iron castings. Microscopy and Microanalysis. 23(1), 350-351. DOI: 10.1017/S1431927617002434.
  • [14] Bedolla-Jacuinde, A. Correa, R., Quezada, J.G. & Maldonado, C. (2005). Effect of titanium on the as-cast microstructure of a 16% chromium white iron. Materials Science and Engineering A. 398, 297–308. DOI:10.1016/j.msea.2005.03.072.
  • [15] Bedolla-Jacuinde, A., Aguilar, S.L. & Hernandez, B. (2005). Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: Part I Effect on microstructure. Journal of Materials Engineering and Performance. 14, 149-157. DOI: 10.1361/10599490523300.
  • [16] Bedolla-Jacuinde, A., Aguilar, S.L. & Maldonado, C. (2005). Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: Part II. Effect on the wear behavior. Journal of Materials Engineering and Performance. 14, 301-306. DOI: 10.1361/10599490523300.
  • [17] Chung, R.J., Tang, X., Li, D.Y., Hinckley, B. & Dolman, K. (2013). Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance. Wear. 301, 695-706. DOI: 10.1016/j.wear.2013.01.079.
  • [18] Guo, E., Wang, L., Wang, L. & Huang, Y. (2009). Effects of RE, V, Ti and B composite modification on the microstructure and properties of high chromium cast iron containing 3% molybdenum. Rare Metals. 28, 606-611. DOI: 10.1007/s12598-009-0116-1.
  • [19] Siekaniec, D., Kopyciński, D., Szczęsny, A., Guzik, E., Tyrała, E. & Nowak, A. (2017). Effect of titanium inoculation on tribological properties of high chromium cast iron. Archives of Foundry Engineering. 4, 143-146. DOI: 10.1515/afe-2017-0146.
  • [20] Kopyciński, D. & Piasny, S. (2016). Influence of inoculation on structure of chromium cast iron. In Characterization of Minerals, Metals, and Materials, Ikhmayies, S.J., Ed.; Springer Science and Business Media LLC: Berlin, Germany, 705-712.
  • [21] Kopyciński, D. (2009). Inoculation of chromium white cast iron. Archives of Foundry Engineering. 9, 191-194.
  • [22] Tiryakioglu, M. (2020). On the heterogeneous nucleation pressure for hydrogen pores in liquid aluminium. International Journal of Cast Metals Research. 33(4-5), 153- 156. DOI: 10.1080/13640461.2020.1797335.
  • [23] Tiryakioglu, M. (2020). The effect of hydrogen on pore formation in aluminum alloy castings: myth versus reality. Metals. 10, 368. DOI: 10.3390/met10030368.
  • [24] Dojka, M. & Stawarz, M. (2020). Bifilm defects in Ti inoculated chromium white cast iron. Materials. 13, 3124. DOI: 10.3390/ma13143124.
  • [25] Campbell, J. (2015). Complete Casting Handbook. Metal Casting Processes, Metallurgy, Techniques and Design. 2nd ed. Oxford, UK: Butterworth-Heinemann.
  • [26] Jonczy, I. (2014). Diversification of phase composition of metallurgical wastes after the production of cast iron. Archives of Metallurgy and Materials. 59 (2), 481-485. DOI: 10.2478/AMM-2014-0079.
  • [27] Campbell, J. (2009). A Hypothesis for cast iron microstructures. Metallurgical and Materials Transactions B. 40(6), 786-801. DOI: 10.1007/s11663-009-9289-0.
  • [28] Mihailova I., Mehandjiev, D. (2010). Characterization of fayalite from copper slags. Journal of the University of Chemical Technology and Metallurgy. 45(3), 317-326.
  • [29] Presnall, D.C. (1995). Phase diagrams of Earth-forming minerals. Mineral Physics & Crystallography – A Handbook of Physical Constants. 2, 248-268.
  • [30] Lide, D.R. (2004). Handbook of chemistry and physics. CRC Press LLC, Boca Raton.
  • [31] Irons, G.A. & Guthrie, R.I.L. (1981). Kinetic aspects of magnesium desulfurization of blast furnace iron. Ironmaking and Steelmaking. 8, 114-21
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64902d7f-ef8d-4f22-a41d-423f9364416a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.