PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of effectiveness of waterjet propulsor for a small underwater vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of the project described is to replace the existing propulsion system of a small underwater vehicle with a solution less prone to mechanical damage and ensuring a lower risk of the entanglement of fibrous objects suspended in the body of water. Four typical marine screws are utilised in the current design of the vehicle. One possible solution of the problem is the application of waterjet propulsors located inside the body of the vehicle instead. The general conditio of the application of the new solution was to secure at least the same motion control capabilities of the vehicle while the basic capability is its propulsion effectiveness at the required speed. Specific features of the considered waterjet propulsor, when compared with their application in surface vessel propulsion, are the lack of the head losses and the low significance of cavitation issues. One of the difficulties in the considered case is the small diameter of the propulsor in comparison to commercially available waterjet units, which have diameters between 0.1 [m] and 1.0 [m]. There is very little data regarding the design and performance of devices in the 0.02 to 0.05 [m] range. Methods utilised to forecast the performance of the new propulsion system are presented and results compared. These were semi-empirical calculations, numerical calculations and tests of real devices. The algorithm that is based on semi-empirical calculations is of particular interest while it offers possibility quick assessment of performance of a propulsor composed of several well defined components. The results indicate the feasibility of modification of the propulsion system for the considered vehicle if all the existing circumstances are taken into account.
Rocznik
Tom
Strony
30--41
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • 1. Y. Shen et al., ‘Design of Novel Shaftless Pump-Jet Propulsor for Multi-Purpose Long-Range and High-Speed Autonomous Underwater Vehicle’, IEEE Trans. Magn., vol. 52, no. 7, 2016, doi: 10.1109/TMAG.2016.2522822.
  • 2. L. Zhang, J. N. Zhang, Y. C. Shang, G. X. Dong, and W. M. Chen, ‘A Practical approach to the assessment of waterjet propulsion performance: The case of a waterjet-propelled trimaran’, Polish Marit. Res., vol. 26, no. 4, 2020, doi: 10.2478/pomr-2019-0063.
  • 3. L. Jian, L. Xiwen, Z. Zuti, L. Xiaohui, and Z. Yuquan, ‘Numerical investigation into effects on momentum thrust by nozzle’s geometric parameters in water jet propulsion system of autonomous underwater vehicles’, Ocean Eng., vol. 123, 2016, doi: 10.1016/j.oceaneng.2016.07.041.
  • 4. S. Wang, M. Fu, Y. Wang, and L. Zhao, ‘A Multi-Layered Potential Field Method for Water-Jet Propelled Unmanned Surface Vehicle Local Path Planning with Minimum Energy Consumption’, Polish Marit. Res., vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0015.
  • 5. W. Próchnicki, Analysis of the ship’s jet propulsion capabilities. Gdansk: Politechnika Gdanska, 2001.
  • 6. L. Rowinski, ‘Motion requirements of single mission mine counter submersible craft, Underwater Defence Technology Conference and Exhibition, Malmo, Sweden’, 2003.
  • 7. L. Rowinski, ‘Articulated warhead mine disposal vehicle, Underwater Defence Technology Conference and Exhibition “UDT Europe 2008”, Glasgow, Great Britain’, 2008.
  • 8. ‘The Specialist Committee on Validation of Waterjet Test Procedures’, in Proceedings of the 24th ITTC, 2005, p. Volume II.
  • 9. F. M. White, ‘Fluid Mechanics seventh edition by Frank M. White’, Power, 2011.
  • 10. F. O. M. Faltinsen, Hydrodynamics of High-Speed Maritime Vehicles. Cambridge University Press, 2005.
  • 11. Tesch Krzysztof, Fluid Mechanics. Politechnika Gdanska, 2008.
  • 12. H. T. Schlichting, Boundary Layer Theory. McGraw-Hill, 1979.
  • 13. ‘Report of the Waterjets Group, Proceedings of the 21st International Towing Tank Conference, ITTC’96’, Trondheim, Norway, 1996.
  • 14. T. J. C. Van Terwisga, ‘Waterjet-Hull interaction, PhD. Thesis’, 1996.
  • 15. M. C. Kim and H. H. Chun, ‘Experimental Investigation into the performance of the Axial-Flow-Type Waterjet according to the Variation of Impeller Tip Clearance’, Ocean Eng., vol. 34, no. 2, 2007, doi: 10.1016/j.oceaneng.2005.12.011.
  • 16. C. Lubert, ‘On some recent applications of the coanda effect’, in International Journal of Acoustics and Vibrations, 2011, vol. 16, no. 3, doi: 10.20855/ijav.2011.16.3286.
  • 17. J. Arnold; G.J. Nijhuis, Selection design and operation of rotodynamic pumps. The Nijhuis Pompen. 2005.
  • 18. L. F. Moody, ‘The Propeller Type Turbine’, Trans. Am. Soc. Civ. Eng., 1925.
  • 19. H. H. Anderson, ‘Theory of Centrifugal Pumps’, in Centrifugal Pumps, 1993, pp. 36–43.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-648f8cc2-3cc7-4890-b283-c99b80a00425
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.