PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity Analysis and Calibration of a Rainfall-Runoff Model with the Combined Use of EPA-SWMM and Genetic Algorithm

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An integrated Visual Basic Application interface is described that allows for sensitivity analysis, calibration and routing of hydraulichydrological models. The routine consists in the combination of three freeware tools performing hydrological modelling, hydraulic modelling and calibration. With such an approach, calibration is made possible even if information about sewers geometrical features is incomplete. Model parameters involve storage coefficient, time of concentration, runoff coefficient, initial abstraction and Manning coefficient; literature formulas are considered and manipulated to obtain novel expressions and variation ranges. A sensitivity analysis with a local method is performed to obtain information about collinearity among parameters and a ranking of influence. The least important parameters are given a fixed value, and for the remaining ones calibration is performed by means of a genetic algorithm implemented in GANetXL. Single-event calibration is performed with a selection of six rainfall events, which are chosen so to avoid non-uniform rainfall distribution; results are then successfully validated with a sequence of four events.
Czasopismo
Rocznik
Strony
1755--1778
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
autor
  • Università di Napoli Federico II, Department of Civil, Architectural and Environmental Engineering, Naples, Italy
autor
  • Università di Napoli Federico II, Department of Civil, Architectural and Environmental Engineering, Naples, Italy
Bibliografia
  • ASCE (1993), Criteria for evaluation of watershed models, J. Irrig. Drain. Eng. ASCE 119, 3, 429-442.
  • Aubert, D., C. Loumagne, and L. Oudin (2003), Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model, J. Hydrol. 280, 1-4, 145-161, DOI: 10.1016/S0022-1694(03)00229-4.
  • Bagirov, A.M., A.F. Barton, H. Mala-Jetmarova, A.Al Nuimat, S.T. Ahmed, N. Sultanova, and J. Yearwood (2013), An algorithm for minimization of pumping costs in water distribution systems using a novel approach to pump scheduling, Math. Comput. Model. 57, 3-4, 873-886, DOI: 10.1016/ j.mcm.2012.09.015.
  • Barco, J., K. Wong, and M. Strenstrom (2008), Automatic calibration of the U.S. EPA SWMM model for a large urban catchment, J. Hydraul. Eng. 134, 4, 466-474, DOI: 10.1061/(ASCE)0733-9429(2008)134:4(466).
  • Beven, K., and A. Binley (1992), The future of distributed models: model calibration and uncertainty prediction, Hydrol. Process. 6, 3, 279-298, DOI: 10.1002/hyp.3360060305.
  • Bossard, M., J. Feranec, and J. Othael (2000), CORINE Land Cover technical guide – Addendum 2000, Technical Report N. 40, European Environment Agency, Copenaghen, Denmark.
  • Brocca, L., F. Melone, T. Moramarco, W. Wagner, V. Naeimi, Z. Bartalis, and S. Hasenauer (2010), Improving runoff prediction through the assimilation of the ASCAT soil moisture product, Hydrol. Earth Syst. Sci. 14, 10, 1881- 1893, DOI: 10.5194/hess-14-1881-2010.
  • Brun, R., P. Reichert, and H.R. Künsch (2001), Practical identifiability analysis of large environmental simulation models, Water Resour. Res. 37, 4, 1015-1030, DOI: 10.1029/2000WR900350.
  • Butler, D., and J.W. Davies (2004), Urban Drainage, 2nd ed., CRC Press.
  • Cheng, C.T., M.Y. Zhao, K. W. Chau, and X.Y. Wu (2006), Using genetic algorithm and TOPSIS for Xinanggjiang model calibration with a single procedure, J. Hydrol. 316, 1-4, 129-140, DOI: 10.1016/j.jhydrol.2005.04.022.
  • Clark, C.O. (1945), Storage and the unit hydropgraph, Trans. ASCE 110, 1419-1446.
  • Cleveland, R., S. Cleveland, J.E. McRae, and I. Terpenning (1990), STL: A Seasonal-trend decomposition procedure based on Loess, J. Official Stat. 6, 1, 3- 33.
  • Confalonieri, R., G. Bellocchi, S. Bregaglio, M. Donatelli, and M. Acutis (2010), Comparison of sensitivity analysis techniques: a case study with the rice model WARM, Ecol. Modell. 221, 16, 1897-1906, DOI: 10.1016/ j.ecolmodel.2010.04.021.
  • Danish Hydraulic Institute (2002), MOUSE Surface Runoff Models Reference Manual, Horsholm, Denmark.
  • Desbordes, M. (1974), Réflexions sur les méthodes de calcul des réseaux urbains d'assainissement pluvial. Ph.D. Thesis, University of Montpellier 2, France (in French).
  • Desbordes, M. (1975), Un essai de modélisation des phénomènes de ruissellement pluvial urbain, Tecniques et Sciences Municipales 70, 3, 121-126 (in French).
  • Freni, G., G. Mannina, and G. Viviani (2008), Uncertainty in urban stormwater quality modelling: the effect of acceptability threshold in GLUE methodology, Water Res. 42, 8-9, 2061-2072, DOI: 10.1016/j.watres.2007.12.014.
  • Freni, G., G. Mannina, and G. Viviani (2009), Identifiability analysis for receiving water body quality modelling, Environ. Modell. Softw. 24, 1, 54-62, DOI: 10.1016/j.envsoft.2008.04.013.
  • Gironàs, J., L.A. Roesner, L.A. Rossman, and J. Davis (2010), A new applications manual for the Storm Water Management Model (SWMM), Environ. Modell. Softw. 25, 6, 813-814, DOI: 10.1016/j.envsoft.2009.11.009.
  • Green, I.R.A., and D. Stephenson (1986), Criteria for comparison of single event models, Hydrol. Sci. J. 31, 3, 395-411, DOI: 10.1080/02626668609491056.
  • H.R. Wallingford Ltd. (1997), HydroWorks On-line Manual, Wallingford, U.K.
  • Inman, J. (2000), Lagtime relations for urban streams in Georgia, Report 00-4049, U.S. Geological Survey, Water-Resources Investigations, Atlanta, USA.
  • Jawed, K. (1973), Comparison of methods of deriving unit hydrographs, M.Sc. Thesis, Colorado State University, USA.
  • Kleidorfer, M. (2010), Uncertain Calibration of Urban Drainage Models, Innsbruck University Press.
  • Kucherenko, S., M. Rodriguez-Fernandez, C. Pantelides, and N. Shah (2009), Monte Carlo evaluation of derivative-based global sensitivity measures, Reliabil. Eng. Syst. Safety 94, 1135-1148.
  • Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorythm, J. Hydrol. 211, 1-4, 69-85, DOI: 10.1016/S0022-1694(98)00198-X.
  • Lim., K.J., B.A. Engel, S. Muthukrishnan, and J. Harbor (2006), Effects of initial abstraction and urbanization on estimated runoff using CN technology, J. Am. Resour. Assoc. 42, 3, 629-643, DOI: 10.1111/j.1752-1688.2006.tb04481.x.
  • Mancipe-Munoz, N.A., S.G. Buchberger, and M.T. Suidan (2011), Calibration of distributed rainfall-runoff model in Hamilton County, Ohio. In: On Modeling Urban Water Systems, CHI Press, Toronto, 177-191.
  • Mancipe-Munoz, N.A., S.G. Buchberger, M.T. Suidan, and T. Lu (2014), Calibration of rainfall-runoff model in urban watersheds for stormwater management assessment, J. Water Resour. Plan. Manag. 140, 6, 05014001, DOI: 10.1061/ (ASCE)WR.1943-5452.0000382.
  • Mandenius, C.F., and N.J. Titchener-Hooker (eds.) (2013), Measurement, Monitoring, Modelling and Control of Bioprocesses, Springer, Berlin.
  • Mannina, G., G. Freni, G. Viviani, S. Saegrov, and L.S. Hafskjold (2006), Integrated urban water modelling with uncertainty analysis, Water Sci. Technol. 54, 6-7, 379-386, DOI: 10.2166/wst.2006.611.
  • Mantovan, P., and E. Todini (2006), Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology, J. Hydrol. 330, 1-2, 368-381, DOI: 10.1016/j.jhydrol.2006.04.046.
  • Martin, P.H., E.J. LeBoeuf, J.P. Dobbins, E.B. Daniel, and M.D. Abkwitz (2005), Interfacing GIS with water resource models: a state-of-the-art review, J. Am. Water Resour. Assoc. 41, 6, 1471-1487, DOI: 10.1111/j.1752-1688.2005. tb03813.x.
  • Martinec, J., and A. Rango (1989), Merits of statistical criteria for the performance of hydrological models, Water Resour. Bull. 25, 2, 421-432.
  • McCuen, R.H. (1982), A Guide to Hydrologic Analysis Using SCS Methods, Prentice-Hall, Inc.
  • McEnroe, B.M., and H. Zhao (1999), Lag times and peak coefficients for rural watersheds in Kansas, Report No. K-TRAN: KU-98-1, University of Kansas, USA.
  • Melching, C.S., and J.S. Marquardt (1997), Equations for estimating synthetic unithydrograph parameter values for small watersheds in Lake County, Illinois, USGS Open-File Report 96-474, U.S. Geological Survey.
  • Nash, J.E., and J.V. Sutcliffe (1970), River flow forecasting through conceptual models. Part 1 – A discussion of principles, J. Hydrol. 10, 3, 282-290, DOI: 10.1016/0022-1694(70)90255-6.
  • Niemczynowicz, J. (1987), Storm tracking using rain gauge data, J. Hydrol. 93, 1-2, 135-152, DOI: 10.1016/0022-1694(87)90199-5.
  • Rao, R.A., and J.W. Delleur (1974), Instantaneous Unit Hydrographs, peak discharges and time lags in urban basins, Hydrol. Sci. J. 19, 2, 185-198, DOI: 10.1080/02626667409493898.
  • Rao, R.A., J.W. Delleur, and B.S.P. Sarma (1972), Conceptual hydrologic models for urbanizing basins, J. Hydraul. Div. 98, 7, 1205-1220.
  • Reichert, P., and P. Vanrolleghem (2001), Identifiability and uncertainty analysis of the River Water Quality Model No. 1 (RWQM1), Water Sci. Technol. 43, 7, 329-338.
  • Rossman, L.A. (2004), Storm Water Management Model User’s Manual Version 5.0, U.S. Environmental Protection Agency (EPA).
  • Sabol, G.V. (1988), Clark unit hydrograph and R-parameter estimation, J. Hydraul. Eng. 114, 1, 103-111, DOI: 10.1061/(ASCE)0733-9429(1988)114:1(103).
  • Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola (2008), Global Sensitivity Analysis. The Primer, John Wiley & Sons.
  • Sarma, P.B.S., J.W. Delleur, and A.R. Rao (1973), Comparison of rainfall-runoff models for urban areas, J. Hydrol. 18, 3-4, 329-347, DOI: 10.1016/0022- 1694(73)90056-5.
  • Savić, D.A., J. Bicik, and M.S. Morley (2011), A DSS Generator for multiobjective optimisation of spreadsheet-based models, Environ. Modell. Softw. 26, 5, 551-561, DOI: 10.1016/j.envsoft.2010.11.004.
  • Schaake, J.C., J.C. Geyer, and J.W. Knapp (1967), Experimental evaluation of rational method, J. Hydraul. Div. 93, 6, 353-370.
  • Schreider, S.Y., P.C. Young, and A.J. Jakeman (2001), An application of the Kalman filtering technique for streamflow forecasting in the Upper Murray Basin, Math. Comput. Modell. 33, 6-7, 733-743, DOI: 10.1016/S0895- 7177(00)00276-4.
  • Stedinger, J.R., R.M. Vogel, S.U. Lee, and R. Batchelder (2008), Appraisal of the generalized likelihood uncertainty estimation (GLUE) method, Water Resour. Res. 44, 12, W00B06, DOI: 10.1029/2008WR006822.
  • Stisen, S., and I. Sandholt (2010), Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling, Hydrol. Process 24, 7, 879-891, DOI: 10.1002/hyp.7529.
  • Straub, T.D., C.S. Melching, and K.E. Kocher (2000), Equations for estimating Clark unit hydrograph parameters for small rural catchments in Illinois, Report 00-4184, Water-Resources Investigations, USGS.
  • Tan, S.B.K., L.C.H. Chua, E.B. Shuy, E.Y. Lo, and L.M. Lim (2008), Performances of rainfall-runoff models calibrated over single and continuous storm flow events, J. Hydraul. Eng. 13, 7, 597-607, DOI: 10.1061/(ASCE)1084- 0699(2008)13:7(597).
  • Thorndahl, S., C. Johansen, and K. Schaarup-Jensen (2006), Assessment of runoff contributing catchment areas in rainfall runoff modelling, Water Sci. Technol. 54, 6-7, 49-56, DOI: 10.2166/wstr=.2006.621.
  • Thorndahl, S., K.J. Beven, J.B. Jensen, and K. Schaarup-Jensen (2008), Event based uncertainty assessment in urban drainage modelling, applying the GLUE methodology, J. Hydrol. 357, 3-4, 421-437, DOI: 10.1016/j.jhydrol.2008.05. 027.
  • U.S. Army Corps of Engineers (1985), HEC-1 flood hydrograph package, Hydrologic Engineering Center, Davies, California, USA.
  • Wisner, P., and J.C. P’ng (1983), IMPSWM urban drainage modelling procedures, Department of Civil Engineering, University of Ottawa, Canada.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6484607c-5b43-4b0f-b409-0e76987fa37f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.