Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The electric spark induced ignition mechanism for explosives needs further study. The ignition of powdery and bulky TATB by electrostatic discharge (ESD) was investigated. Up to 200 kV ultra-high voltage ESD was applied to powdery and bulky explosives of two TATB-based polymer-bonded explosives (named PBX-1 and PBX-2). The results showed that the spark sensitivities of powdery and bulky explosives are extremely different for the same formulation. The 50% ignition voltages of powdery PBX-1 and PBX-2 were 10.8 kV and 8.5 kV, respectively, while the values for the bulky samples (tablets) were not less than 200 kV. Both heat and the electric field can be transmitted into the powdery samples, on the other hand only the electric field can be transmitted into the bulk samples. The electric field has a smaller contribution while the heat has a larger contribution to the ignition during an ESD, i.e., the thermal effect plays a main role in the ignition process. Our experimental results are in good agreement with recent results calculated by density functional theory.
Rocznik
Tom
Strony
283--298
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP) Mianyang 621900, China
autor
- China Academy of Engineering Physics (CAEP), Mianyang, 621900, Sichuan, China
autor
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP) Mianyang 621900, China
autor
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP) Mianyang 621900, China
autor
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP) Mianyang 621900, China
autor
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP) Mianyang 621900, China
autor
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP) Mianyang 621900, China
autor
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP) Mianyang 621900, China
autor
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP) Mianyang 621900, China
Bibliografia
- [1] Talawar, M. B.; Agrawal, A. P.; Anniyappan, M.; Wani, D. S.; Bansode, M. K.; Gore, G. M. Primary Explosives: Electrostatic Discharge Initiation, Additive Effect Its Relation Explosive Characteristics. J. Hazard. Mater. B 2006, 137:1074-1078.
- [2] Keshavarz, M. H.; Pouretedal, H. R.; Semnani, A. Reliable Prediction of Electric Spark Sensitivity of Nitramines: a General Correlation with Detonation Pressure. J. Hazard. Mater. A 2009, 167: 461-466.
- [3] Zhi, C. Y.; Cheng, X. L.; Zhao, F. The Correlation between Electric Spark Sensitivity of Polynitroaromatic Compounds and Their Molecular Electronic Properties. Propellants Explos. Pyrotech. 2010, 35: 555-560.
- [4] Zeman, S. A New Aspect of Relationships between Electric Spark Sensitivity and Thermal Stability of Some Polynitro Arenes. Chin. J. Energ. Mater. 2008, 16(6):652-658.
- [5] Zeman, S. Electric Spark Sensitivity of Polynitro Compounds: Part IV: A Relation to Thermal Decomposition Parameters. Chin. J. Energ. Mater. 2000, 8(1): 18-26.
- [6] Zeman, V.; Koci, J.; Zeman, S. Electric Spark Sensitivity of Polynitro Compounds:Part II: A Correlation with Detonation Velocities of some Polynitro Arenes. Chin. J. Energ. Mater. 1999, 7(3): 127-136.
- [7] Auzenneau, M.; Roux, M. Electric Spark and ESD Sensitivity of Reactive Solids (Primary or Secondary Explosive, Propellant, Pyrotechnics). Part II: Energy Transfer Mechanisms and Comprehensive Study on E50. Propellants Explos. Pyrotech. 1995, 20(2): 96-101.
- [8] Larson, T. E.; Dimas, P.; Hannaford, C. E. Electrostatic Sensitivity Testing of Explosives. Los Alamos Inst. Phys. Conf. Ser. IOP Publishing Ltd., 1991, 107-117.
- [9] Roux, M.; Auzanneau, M.; Brassy, C. Electric Spark and ESD Sensitivity of Reactive Solids (Primary or Secondary Explosive, Propellant, Pyrotechnics) Part I: Experimental Results and Reflection Factors for Sensitivity Test Optimization. Propellants Explos. Pyrotech. 1993, 18(6): 317-324.
- [10] Roux, M.; Auzanneau, M.; Brassy, C. Electric Spark and ESD Sensitivity of Reactive Solids (Primary or Secondary Explosive, Propellant, Pyrotechnics) Part I: Experimental Results and Reflection Factors for Sensitivity Test Optimization. Propellants Explos. Pyrotech. 1993, 18(6): 317-324.
- [11] Roux, M.; Trevino, A.; Auzannav, M.; Brassy, C. Sensitive Explosive Materials. 16th Annu. Conf. ICT, Karlsruhe, Germany 1985, 3.1-3.15.
- [12] Hasegawa, T.; Kawashima, E.; Satoh, K.; Yoshida, T. Correlation between Screening Test Results of Energetic Materials. 22th Int. Pyrotechnic Seminar, Fort Collines, Colorado, USA 1996, 195-207.
- [13] Amari, S.; Hosoya, F.; Mizushima, Y.; Yoshida, T. Electrostatic Spark Ignitability of Energetic Materials. 21th Int. Pyrotechnic Seminar, Moscow, Russia 1995, 13-31.
- [14] Greason, W. D. Analysis of the Charge or Discharge Processes for the Basic ESD Models. IEEE Trans. Ind. Appl. 1993, 29(5): 887-896.
- [15] Fuze and Fuze Components, Environmental and Performance Tests. MIL-STD-331B, Department of Defense (DoD), USA 1989.
- [16] Lv, Z. J.; Hu, Q. X.; Hua, C. Effect of Sample Mass on Impact Sensitivity of Insensitive Explosives. Chin J. Energ. Mater. 1995, 3: 40-44.
- [17] Dahn, C. J.; Kashani, A.; Nguyen, M. New Concepts in Studying Electrostatic Discharge Hazards of Propellants, Pyrotechnics and Explosives. 17th Int. Pyrotechnic Seminar, Beijing, China 1997, 941-944.
- [18] Explosives Hazard Assessment, Manual of Tests. SCC No. 4; a) Test No. 1/88, b) Test No. 3/88.6, UK Sensitiveness Collaboration Committee, 1988.
- [19] Mizushima, Y. Electrostatic Spark Sensitivity of Explosives. Kogyo Kayaku 1978, 39(3): 129-132.
- [20] Kuroda, E.; Nagaishi, T. Ignition Mechanism of Pyrotechnic Materials by Electrostatic Discharge. 18th Int. Pyrotechnic Seminar, Breckenridge, Colorado, USA 1992, 511-523.
- [21] Skinner, D.; Olson, D.; Block-Bolten, A. Electrostatic Discharge Ignition of Energetic Materails. Propellants Explos. Pyrotech. 1998, 23: 34-42.
- [22] Becke, A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98: 5648-5652.
- [23] Song, X. S.; Ji, S. Y.; Cheng, X. L.; Yang, X. D.; Li, D. H. The Molecular Properties of Some Nitrobenzene Explosives in Electric Field. Journal of Atomic and Molecular Physics 2007, 24(5): 916-920.
- [24] Tang, C. M.; Chen, X. X.; Yang, X. D.; Wang, J.; Hu, Y. F. Relationship between Electric Spark Sensitivity of some Nitramines and Their Electronic Properties in External Electric Field. Journal of Sichuan University (Natural Science Edition) 2013, 50(2): 321-325.
- [25] Huang, H.; Li, Z.; Zhang, T.; Zhang, G.; Zhang, F. Theoretical Study of the Correlation between Electrostatic Hazard and Electronic Structure for some Typical Primary Explosives. J. Mol. Model. 2015, 21(8): 200.
- [26] Orville, R. E.; Uman, M. A.; Sletten, A. M Temperature and Electron Density in Long Air Sparks. J. Appl. Phys. 1967, 38(2): 896-896.
- [27] Ryo, O.; Masaharu, N.; Shuzo, F.; Sadashige, H. Gas Temperature of Capacitance Spark Discharge in Air. J. Appl. Phys. 2005, 97(12): 123307.
- [28] Dixon, W. J.; Mood, A. M. A Method for Obtaining and Analyzing Sensitivity Data. J. Am. Statist. Assoc. 1948, 43(1): 109-126.
- [29] Wang, F.; Wu, Z.; Shangguan, X.; Sun, Y.; Feng, J.; Li, Z.; Chen, L.; Zuo, S.; Zhuo, R.; Yan, P. Preparation of Mono-dispersed, High Energy Release, Core/Shell Structure Al Nanopowders and Their Application in HTPB Propellant as Combustion Enhancers. Scientific Reports 2017, 7(1): 5228.
- [30] Jin, H.; Dong, S. R.; Miao, M.; Liou, J. J.; Yang, C. Y. Breakdown Voltage of Ultrathin Dielectric Film Subject to Electrostatic Discharge Stress. J. Appl. Phys. 2011, 110(5): 103508.
- [31] Weir, B. E.; Leung, C. C.; Silverman, P. J.; Alam, M. A. Gate Dielectric Breakdown: a Focus on ESD Protection. IEEE Int. Reliab. Phys. Symp. Proc. 2004, 42: 399-404.
- [32] Tseng, J. C.; Hwu, J. G. Oxide-Trapped Charges Induced by Electrostatic Discharge Impulse Stress. IEEE Trans. Electron Devices 2007, 54: 1666-1671.
- [33] Lin, D. L. Electron Multiplication and Electrostatic Discharge Wave Forms. J. Appl. Phys. 1992, 71(6): 2580-2586.
- [34] Wilson, Jr. E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations, the Theory of Infrared and Raman Vibrational Spectra. McGraw Hill, New York 1955.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6483904a-4023-4b2d-83c1-d522cbe8981f