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Abstract: The electric spark induced ignition mechanism for explosives needs 
further study.  The ignition of powdery and bulky TATB by electrostatic discharge 
(ESD) was investigated.  Up to 200 kV ultra-high voltage ESD was applied to 
powdery and bulky explosives of two TATB-based polymer-bonded explosives 
(named PBX-1 and PBX-2).  The results showed that the spark sensitivities of 
powdery and bulky explosives are extremely different for the same formulation.  
The 50% ignition voltages of powdery PBX-1 and PBX-2 were 10.8  kV and 
8.5 kV, respectively, while the values for the bulky samples (tablets) were not less 
than 200 kV.  Both heat and the electric field can be transmitted into the powdery 
samples, on the other hand only the electric field can be transmitted into the bulk 
samples.  The electric field has a smaller contribution while the heat has a larger 
contribution to the ignition during an ESD, i.e., the thermal effect plays a main 
role in the ignition process.  Our experimental results are in good agreement with 
recent results calculated by density functional theory.
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1	 Introduction

Electrostatic discharge (ESD) can induce direct ignition of explosives  [1].  
During normal operation of explosives or ammunitions, casualties and damage 
may occur that are attributable to ESD induced ignition.  The occurance of ESD 
is closely related with its energy released.  Generally electrostatic sensitivity 
is determined by the electrostatic energy of capacitance discharge resulting in 
a probability of 50% initiation [2].  The electrostatic energy can be calculated 
from the known capacitance C (in F) of the circuit and voltage U (in V) at the 
condenser by means of the well-known equation EES = 0.5CU2 [3].  For some 
sensitive explosives, even a low energy spark, of the order of 2-3 mJ, may cause 
initiation.  The static discharge hazard is normally associated with ordinary 
operations, where the energy accumulated on a person may be up to 20 mJ [1]. 

Previous papers [4-13] have shown that the spark sensitivity of energetic 
materials is affected by several factors, such as chemical components, 
granulometry, grain shape, mechanical properties, temperature, moisture content, 
as well as the configuration of the electrodes and structure of the circuit.  The 
electrode and circuit parameters correspond to the models of static discharge, 
such as the human body model (HBM) [14] and the helicopter model (HEM) [15].

The ESD safety of an explosive is usually evaluated by the spark sensitivity 
of explosive powders, such as ICM in China [16], USA organizations [17], 
RARDE in UK [18], Mizushima [19] and Kuroda and Nagaishi [20].  The 
voltage is often lower than 30 kV.  For instance, the testing standard of China 
uses a capacitance of 30500 pF, a sample mass of 20 ±2 mg, an air gap between 
two electrodes (pin and board) of 0.5 mm and a highest voltage of 30 kV.  This is 
the so-called the HBM. HBM is employed to simulate the approach of a charged 
human body to a detonator device or explosive.  It is very commonly used within 
the energetic materials community [4-6].

As the air operations are more and more frequent, the HBM is no longer 
suitable for evaluating the ESD safety of an explosive in an actual situation.  
During transportation, electrostatic charge will be increasingly accumulated 
on the the airscrew of the helicopter, which creates a great risk to the energetic 
parts of the ammunition.  The ESD energy on helicopters covers a wide range.  
Normally, the representative value can be denoted using a capacitance of 1000 pF 
with a voltage of 200-300 kV and a maximun discharge resistance of 1 Ω.  As 
a result, much harsher stimulations are needed to evaluate the safety of explosives 
from ESD on helicopters. 

Referring to the USA Military Standard (MIL-STD-331B, a Standard of 
the ESD test for air replenishment by helicopter), we built an installation which 
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can implement an ESD test up to 300 kV.  Using this installation, ESD tests on 
two TATB based polymer-bonded explosives, PBX-1 (with a  formulation of 
75 wt.% TATB + 20 wt.% HMX + 4 wt.% binder + other components) and PBX-2 
(with a coarse formulation of 60 wt.% TATB + 35 wt.% HMX + 4 wt.% binder 
+ other components), at ultra-high voltages were carried out.  This is because 
these two formulations, having great potential to be employed in detonators (the 
most dangerous part of a warhead), have not been tested by the helicopter model 
spark sensitivity test.  We also carried out low voltage (HBM) ESD tests on the 
powders of the two explosives to evaluate the safety of a charged human body 
to the explosive powders during daily operation.  For all of the polymers and 
other additives used, the content of insoluble impurities was less than 0.3%.  The 
purity of the TATB used was in the range 98.0-98.5%.  TATB was synthesized 
in our institute by nitration of 1,3,5-trichlorobenzene to 1,3,5-trichloro-2,4,6-
trinitrobenzene, followed by amination.

There are no commonly recognized ideas for an electric spark induced 
ignition mechanism [4-6].  Normally, larger granularities of explosives 
correspond to better safety performance against electrostatic discharge (ESD).  
Auzanneau et al. [7] deemed that ‘hot spots’ should develop at the thinnest part 
of the solid during ignition by ESD.  These phenomena are similar to the response 
of an explosive undergoing thermal stimulation.

Their former explanations usually involved a thermal effect but the effect 
of the electric field is rarely mentioned or considered [4-6, 21].  For instance, 
Zeman et al. [4-6] found that spark sensitivity is related to the temperature, heat 
of combustion and thermal stability of an explosive.  There are few experimental 
studies on the effect of the electric field, but a few simulation studies have been 
tried [9, 10].  The results of Cheng et al. [3] using the DFT-B3LYP method [22] 
showed that the lowest unoccupied molecular orbital energy and the Mulliken 
charges of the nitro group have an important effect on electric spark sensitivity.  
The molecular energy, dipole moment and the energy gap between HOMO and 
LUMO of some nitrobenzene-type explosive molecules were calculated using 
Density Functional Theory (DFT) by Song et al. [23].  It was shown that the 
molecular energy and the E-gap of HOMO and LUMO decreased and the dipole 
moment increased in an electric field.  The results of Tang et al. [24] showed 
that with and without the electric field, the theoretical values are in excellent 
agreement with the experimental ones.  Huang et al. [25] carried out theoretical 
studies on the correlation between electrostatic hazard and electronic structure 
for some typical primary explosives.  Their study revealed that the electrostatic 
spark sensitivities of these primary explosives are related to their electrostatic 
potentials and energy gaps.  Despite these successful researches, the role of the 
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external electric field in ignition by ESD is not yet well understood. 
Generally, during an ESD, the explosive is stimulated by the electric field 

and high temperature [26, 27].  The electric field polarizes the explosive molecule 
[23] and the thermal effect may break chemical bonds to initiate decomposition.  
In the present work, electric field effects as well as the thermal effect were 
considered in studying the safety performance of PBX-1 and PBX-2.

2	 Experimental

2.1	 Test method for explosive powders 
The test arrangement for the electrostatic spark method for explosive powders 
is shown in Figure 1.  The discharging capacitance was 30500 pF.  The air gap 
between the electrodes was set at 0.5 mm.  The explosive powder was stimulated 
by the electrostatic spark during an ESD through the air gap.  The mass of sample 
was set at 20 ±2 mg.  The sample of 20 mg was rolled out on the board electrode 
and the top of the polymethyl methacrylate (PMMA) sleeve was covered with 
transparent adhesive tape, thus a closed cavity was formed inside the PMMA 
sleeve.  The transparent adhesive tape was then pierced with a pin electrode, 
setting the air gap between the two electrodes at 0.5 mm.  The pin electrode was 
the negatively charged electrode, namely a cathode (−), in our test (Figure 1).  
The up-and-down procedure (UDP) [28] was applied in selecting the voltage of 
every attempt during the ESD tests for the samples of PBX-1 and PBX-2.  The 
higest voltage applied to the explosive powders was 30 kV. 

 

Figure 1.	 Illustration of the electrostatic spark test method for explosive 
powders 
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2.2	 Test method for explosive tablets 
The test arrangement of the electrostatic spark method for explosive tablets is 
shown in Figure 2.  The air gap between the electrodes was set at 1.5 mm.  The 
mass of the sample was set at 0.7 g with a diameter 10mm and thickness 5 mm.  
The sample was positioned on a PMMA base, and two parallel pin electrodes with 
a separation of 1.5 mm were fixed on the surface of the tablet by a holder made 
of PMMA.  The ESD of the Pin-Pin discharge was employed.  The explosive 
tablet was stimulated by the electrostatic spark during the ESD (Figure 2).  The 
method of explosion probability was applied for different voltages.  The ultra-
high voltage electrostatic discharge equipment used in this work is shown in 
Figure 3.  The test was initiated at 60 kV and an increment of 20 kV was added 
if no reaction occurred in 7 ESD at each voltage until reaction occurred or until 
the voltage reached 200 kV. 

Figure 2.	 Illustration of the electrostatic spark test method for explosive tablets 

Figure 3.	 Ultra-high voltage electrostatic discharge equipment 
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The range of voltages the equipment could discharge was between 0 kV and 
300 kV.  The discharging capacitance was 1000 pF and the discharging resistance 
was 1 Ω, with a discharging inductance of 20 μH.  These technical details obey 
the American Military Standard (MIL-STD-331B), and this model is called the 
‘Helicopter Model’. 

To identify an appropriate value for the distance of the air gap between two 
pin-electrodes, ESD tests were performed under various air gaps to investigate the 
effect of the air gap distance on the discharging voltage threshold.  As mentioned 
earlier, the air gap distance was finally set at 1.5 mm; the experimental data is 
presented here as support for this value. 

It should be mentioned that, the reaction degrees under ESD included 
no ignition or ignition, and then extinguished, combustion, deflagration and 
detonation.  For an explosive tablet, if the surface turned black but the tablet 
kept its shape and no further reaction occurred, it was defined as no ignition.

3	 Test results 

3.1	 Test results of the explosive powders
The ESD results of PBX-1 and PBX-2 powders are listed in Table 1.

Table 1.	 Test results for PBX-1 and PBX-2 powders 

Sample Static voltage 
V50* [kV]

Standard 
deviation

[kV]
Static energy 

E50 [J]
Temperature

[°C]
Relative 
humidity

[%]
PBX-1 10.83 2.03 1.789 16 40
PBX-2 8.54 1.03 1.112 16 50

*V50 is the stimulus voltage at which 50% of the tests explode.

The V50 values for PBX-1 and PBX-2 powders were 10.83 kV and 8.54 kV, 
respectively.  In other words, under a  stimulus of an ESD of 10.83  kV and 
8.54 kV, 50% of the samples of PBX-1 and PBX-2 exploded, respectively.  
The corresponding energies (E50) were 1.789 J and 1.112 J, respectively.  After 
reaction, a  lingering smell of burning was observed.  Partial or complete 
consumption of the explosive sample occurred.  The 50% initiation probability of 
a TATB based explosive is much lower than common explosives or conventional 
propellants, e.g. the V50 of ANPs and aluminum micron powders are 1.42 kV 
and 1.53 kV [29].
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3.2	 Test results of ESD with various air gaps 
To study the effect of various air gaps on ESD and to help to choose the best 
distance between two electrodes, we implemented a series of ESD tests in which 
the air gap between the two electrodes was 0.5 mm, 1.5 mm and 4.5 mm.  The 
breakdown voltages at different air gap thicknesses were measured according to 
the method of Jin et al. [30].  A discharging capacitor of 500 pF and a discharging 
resistor of 100 Ω were used.  We tuned the voltage to a specific value and then 
turned on the discharging switch.  Every specific value of the voltage was 
discharged ten times, after which we calculated the flash probabilities.  When the 
discharge occurred, we saw a spark or flash.  The spark or flash is a sign of ESD.  
For every value of the air gap and every voltage 10 attempts were performed.  
ESD stimuli were judged to be stable provided that ESD occurred in all 10 
attempts.  The temperature was 18 °C and the air humidity was 56% RH when 
the tests were performed.  The tests results are listed in Table 2. 

Table 2.	 Flash probabilities with various air gaps (10 attempts for each point, 
18 °C, 56% RH)

Voltage 
[kV]

Flash 
probabilities 

under 0.5 mm
air gap [%]

Voltage 
[kV]

Flash 
probabilities 

under 1.5 mm
air gap [%]

Voltage 
[kV]

Flash 
probabilities 

under 4.5 mm
air gap [%]

1.9 0 2.5 0 6.4 0
2.0 20 2.6 60 6.6 10
2.1 30 2.7 90 6.8 10
2.2 40 2.8 100 7.0 10
2.3 60 - - 7.2 20
2.4 100 - - 7.4 30

The bandwidth of voltages was the narrowest from 
0% to 100% flash probabilities (2.5-2.8 kV) for the 
1.5 mm air gap.  Thus this is the best choice for 
the pin separation.

7.6 40
7.8 70
8.0 90
8.2 100

From Table 2 one can see that, at 18 °C and 56% RH, for a 0.5 mm air gap 
between the two pins, the bandwidth of the breakdown voltage threshold was 
between 1.9 kV and 2.4 kV.  Thus, voltages below or equal to 1.9 kV cannot 
cause an ESD, voltages between 1.9 kV and 2.3 kV may cause an ESD, and 
voltages above or equal to 2.4 kV can definitely cause an ESD.  For a 1.5 mm 
air gap, the bandwidth was between 2.5 kV and 2.8 kV.  For a 4.5 mm air gap, 
the bandwidth was between 6.4 kV and 8.2 kV.  According to the results in 
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Table 2, the threshold of the spark breakdown voltages are proportional to the 
air gap between the electrodes (Figure 4).  When the air gap was increased, the 
breakdown voltage was enhanced.  The bandwidth of voltages was the narrowest, 
from 0% to 100% flash probabilities (2.5-2.8 kV), for a 1.5 mm air gap (Figure 4).  
A narrow bandwidth of voltages is beneficial for higher reproducibility of the 
tests.  So 1.5 mm is the best choice for the pin separation.  Consequently, we set 
the air gap at 1.5 mm for the tablet ESD tests. 

Figure 4.	 Breakdown voltage vs. air gap thickness, at 18 °C and 56% RH 

3.3	 Test results for explosive tablets 

3.3.1	Test results for PBX-1 tablets 
The pictures of PBX-1 samples after a  wide range of high voltages stimuli 
are shown in Figure 5.  These show that after ultra-high voltage ESD, no self-
sustaining combustions or explosions occurred for PBX-1 tablets. 

For PBX-1 tablets, 25 attempts of the test at every 20 kV voltage from 60 kV 
to 200 kV were performed.  The reaction probabilities for the tablets were all zero 
under a wide range of high voltage stimuli, indicating that the tablets of PBX-1 
possess a very good capacity to resist ultra-high voltage electrostatic discharge, 
better than PBX-1 powder.



291Different Ignition Responses of Powdery and Bulky ...

Copyright © 2018 Institute of Industrial Organic Chemistry, Poland

Figure 5.	 Tablets of PBX-1 after ESD at various voltages 

3.3.2 Test results for PBX-2 tablets
The pictures of PBX-2 samples after a wide range of high voltages stimuli are 
shown in Figure 6.  These show that after ultra-high voltage ESDs, no self-
sustaining combustions or explosions occurred for PBX-2 tablets.  The tablets 
cracked under the pressure of sparks, such as the short impulse stress of an ESD 
[31, 32] of 200 kV.  Although the stimulating voltages were very high and despite 
the tablet being torn into small pieces by the small shock waves produced by the 
sparks, still no combustion and ignition occured. 

Figure 6.	 Tablets of PBX-2 after ESD at various voltages 

In the test for PBX-2 tablets at eight high voltage ESDs, from 60 kV to 
200 kV, the reaction probabilities were all zero, indicating that the tablets of 
PBX-2 possess a very good capacity to resist ultra-high voltage electrostatic 
discharge, better than explosive powder of the same formulation.

In Figures 5 and 6, the black spots on the surfaces of the tablets are the trails 
of decompositions.  During the sparks, high temperature as well as air shockwaves 
(a  consequence of the inflation of air heated by the sparks) occurred.  The 
explosive on the surface may be shocked, peeled off and decomposed at higher 
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temperature.  The reaction cannot self-sustain to burning or explosion.  As a result, 
black spots are left on the surfaces of the tablets as trails of decomposition.  Thus, 
the ESD effects on tablets are the combined effects of shockwave loading and 
thermal heating.  

4	 Analysis and Discussion 

The test results show that PBX in a tablet form is very tough during an ESD.  
In all of the hundreds of ESD tests, none of the tablets were ignited, even at the 
ultra-high voltage of 200 kV and repeated 7 times.  Figure 6 shows the tablet after 
these rigorous tests.  No ignition was observed even though the ϕ 10 mm × 5 mm 
PBX-2 tablet was torn into fragments by the shockwaves of the spark. 

The capacitance discharging spark ignition mechanism can be summarized 
as follows.  The air between the electrodes is ionized and penetrated by the 
instantaneous strong static electric field.  As a  result, a huge electric current 
forms and a flash of light is emitted.  A local high temperature spark is the main 
reason for ignition of the explosive.  5 m long air discharges were created and 
the temperatures of the sparks were measured.  The temperatures were in the 
range of 2.0×104 K to 3.4×104 K.  Experiments were also performed on a spark 
of 2.5 m length and the temperature was identical to the values given above [26].  
The temperatures of the N2 molecules were also measured in the capacitance 
spark discharge.  The discharge voltage was 3.0-3.5 kV and the discharge energy 
was 0.03-1 mJ.  The rotational and vibrational temperatures of N2 are estimated 
to be 500 K and 5000 K, respectively [27].

On the whole, during an ESD the explosive is stimulated by the electric field 
and high temperature.  The electric field polarizes the explosive molecules and 
the thermal effect cleaves the chemical bonds to initiate decomposition.  Whether 
the electric field effect and the thermal effect occur in the same time frame is 
still not clear.  We called this ‘the asynchrony problem’. 

To investigate this asynchrony problem, we have initially to find the 
parameters of the electric field effect and thermal effect.  Secondly, the time 
interval for these parameters has to be determined.  According to the spark ignition 
mechanism, the voltage across the gap was chosen as the parameter to denote 
the electric field effect, and the electric current across the gap was chosen as the 
parameter to denote the thermal effect.  The history of an ESD was studied by 
measuring the waveforms of voltage and current across the gap in the electric 
circuit shown in Figure 7.  The methods for measuring the ESD wave forms 
were described by Lin [33]. 
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1 − direct current high voltage electrical source (ESD-30);  2 − charging resistance 
(100 Ω);  3 − static voltage meter;  4 − high voltage switch;  5 − capacitance, 
500 pF;  6 and 7 − discharging resistances (160 Ω);  8 − sampling resistance 
(80 Ω);  9 − ESD gap (1.5 mm);  10 − data collecting system (oscillograph);  
11 − charging part;  12 − discharging part
Figure 7.	 The discharging electrical circuit

The signal of the gap voltage connected to the oscillograph, after being 
attenuated 1000X, and then the waveforms of the voltage were obtained.  The 
signal of the voltage of the sampling resistance connected to the oscillograph, 
after being attenuated 1000X, was then divided by the value of the resistance 
(80 Ω).  The result was the waveform of the current across the gap. 

The electrical source voltages were adjusted to 7 kV, 8 kV, 9 kV and 10 kV 
to test the response of the circuit.  The peak values of voltage and current and 
their time intervals were recorded or calculated, and are listed in Table 3.  The 
shapes of the waveforms were similar, despite the differences in the electrical 
source voltages, except for their peak values. 

Table 3.	 Peak values of voltage and current and their time intervals 
Capacitance 
voltage [kV]

Gap voltage 
[kV]

Gap current 
[A]

Time interval 
[ns]

7 6.96 44.1 23.4
8 7.86 50.5 24.4
9 8.39 53.7 25.6
10 9.36 64.1 24.8

As shown in Table  3, the peak value of the gap voltage is close to the 
capacitance voltage. 
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Figure 8.	 The waveforms of voltage and current across the gap at an ESD of 9 kV

The waveforms of voltage and current across the gap at an ESD of 9 kV are 
shown in Figure 8.  This indicates that there is a time interval between the peak 
of the gap voltage and the peak of the gap current.  The peak of the gap voltage 
was ~25 ns ahead of the peak of the gap current.  When the gap current reaches 
its peak, the gap voltage has decreased to almost zero, indicating that there is 
asynchrony in the thermal effect and the electric field effect during an ESD spark.  
This asynchrony of the electric field effect and the thermal effect during an ESD 
is the time interval between the peak of the electric field effect and the peak of the 
thermal effect.  The electric field effect is ahead of the thermal effect.  This time 
interval weakens the effect of an ESD on an explosive, which causes the ESD to 
exhibit macroscopically the main effect of the spark, namely the thermal effect. 

The electric field can pass through both the powders and the tablets.  On 
the other hand, the spark can easily pass through the powders but not the tablet.  
The heat transfered and absorbed are involved in the thermal effect.  Hence the 
surface area is very important for the response of the thermal stimuli.  The grain 
scale of the powder samples of PBX-1 and PBX-2 (with a V50 of about 10 kV) 
was about 40 μm, so the specific surface area was about 75 mm−1.  Bulk samples 
like the ϕ 10 mm × 5 mm tablets (no ignition at 200 kV ESD) has a specific 
surface area of 0.6 mm−1, which is much smaller than the value of the powder 
samples.  Here the smaller surface area corresponds with a much higher V50.  
The correlation between V50 and the surface area also indicates that the ESD is 
macroscopically mainly a thermal effect. 

The molecular energy, dipole moments and energy of the gaps (Egap) of 
HOMO and LUMO of some nitrobenzene explosive molecules were calculated 
using Density Functional Theory by Song et al.  [23].  It was shown that the 
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molecular energy and the Egap of HOMO and LUMO decreases and the dipole 
moment increases in an electric field.  These results indicate a  near linear 
correlation between the electric spark sensitivity of explosives and the Egap of 
the molecules, namely, a smaller Egap corresponds with a lower electric spark 
sensitivity.  A decrease in molecular energy indicates a more stable molecular 
structure in an external electric field, which is consistent with our explanation 
of our experimental observations. 

5	 Conclusions 

The ignition of powdery and bulky TATB by an electrostatic discharge (ESD) 
was investigated.  Ultra-high voltage ESD tests were carried out on both powdery 
and bulky explosives of TATB-based polymer-bonded explosives.  The results 
showed that the spark sensitivities of powdery and bulky explosives are extremely 
different for even the same formulation.  There were strong correlations between 
the spark sensitivities and the states of the explosives.  The 50% ignition voltages 
of powdery PBX-1 and PBX-2 were 10.8 kV and 8.5 kV respectively, while the 
values for the bulky ones were not less than 200 kV.  In order to explain this 
observation, the contributions of heat and electric field were studied by measuring 
the spark current and voltage waveforms of the circuit in real time.  The results 
showed that the loadings of spark current and voltage cannot be synchronized 
across a gap, indicating there is a time interval between the thermal effect and the 
electric field effect.  After the peak of the voltage has passed, the spark current 
gradually increases.  There is a time interval of ~25 ns between the two peaks, 
greater than the molecular vibration periods (of the order of 10 ps) according to 
molecular vibration theory [34].  Combined with the available literature [23], 
we can draw a conclusion that the molecules of explosives are polarized during 
the loading of an external electric field.  However these polarized molecules 
will be rapidly restored to their original structure, in a time such as 10 ps.  Both 
the heat and electric field can transmit deep into the PBX powers; on the other 
hand only the electric field can transmit deep into the bulk.  Thus the electric 
field has a smaller contribution while the heat has a larger contribution to the 
ignition during an ESD, that is the thermal effect plays a main role in the ignition 
process.  The time interval weakens the effect of an ESD on an explosive, which 
causes the ESD to exhibit macroscopically the main effect of thermal sparks.  Our 
experimental results are in good agreement with recent DFT calculated results.  
Our results provide academic insight and experimental evidence for electrostatic 
safety management in explosives manufacture and applications.
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