Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to understand the real activity and operating situation of container ships in order to improve navigation efficiency. The study focused on the navigation for an entire ship voyage to understand the real activity of container ships using the historical ship navigation based on Automatic Identification System (AIS) data, which is possible so as to unveil the characteristics of real ship activity. The analysis considers ship voyages in the Seto Inland Sea and its oceanic waters, which are the primary traffic routes for container transportation particularly for China, Japan, and South Korea. The results of this study can be used to improve the efficiency of container ships and develop a smoother maritime transportation.
Rocznik
Tom
Strony
213--220
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- Kobe University, Kobe, Japan
autor
- Osaka University, Osaka, Japan
autor
- Kobe Universit, Kobe, Japan
Bibliografia
- 1 Avriel M., Penn M. and Shporer. N, 2000. Container ship stowage problem: complexity and connection to the coloring of circle graphs, Discrete Applied Mathematics, Volume 103, Issues 1–3, 271–279.
- 2 Coello J. et al., 2015. An AIS‐based approach to calculate atmospheric emissions from the UK fishing fleet, Atmospheric Environment Volume 114, 1–7.
- 3 Gao X. 2013: A Study on Analysis of Actual Situation of Vessel Traffic in Osaka Bay Using AIS, Annual Journal of Civil Engineers in the Ocean, JSCE VOL.69, No.2, 1‐6 (in Japanese).
- 4 IMO, 2003: Guidelines for the installation of a shipborne automatic identification system (AIS), SN/Circ.227.
- 5 Kobayashi E., Hashimoto H., Taniguchi Y. and Yoneda S. 2015. Advanced optimized weather routing for an ocean‐going vessel, 2015 International Association of Institutes of Navigation World Congress (IAIN), 1‐8.
- 6 Lin Y., Fang M. and Yeung R. 2013. The optimization of ship weather‐routing algorithm based on the composite influence of multi‐dynamic elements, Applied Ocean Research Volume 43, 184–194.
- 7 Makino H. 2012. Analysis of ship refuge action in tsunami using AIS data: Case of the 2011 East Japan Earthquake and Tsunami. Journal of Shipping and Ocean Engineering 2, 380‐385.
- 8 Montewka J, Hinz T, Kujala P and Matusiak J 2010. Probability modelling of vessel collisions. RELIAB ENG SYST SAFE, Vol. 95, Issue 5, 573‐589.
- 9 Niwa Y. and Motogi, H. 2009. Vessel Traffic Analysis of Automatic Identification System (AIS) Data in Kanmon Channel. Japan Society of Mechanical Engineers of Transportation and Logistics, 18, 325‐326.
- 10 Olindersson F., Janson C. E. and Dahlman J. Maritime Traffic Situations in Bornholmsgat. The International Journal on Marine Navigation and Safety of Sea Transportation (TransNav), Volume: 9 Issue Number: 1, 115‐120.
- 11 Roh M and Ha S, 2013: Advanced ship evacuation analysis using a cell‐based simulation model. COMPUT IND Vol. 64 (1), 80‐89.
- 12 WSC, 2011‐2013. Top 50 world container ports, http://www.worldshipping.org/about‐theindustry/ global‐trade/top‐50‐world‐container‐ports. Check on June 10, 2015.
- 13 WSC, 2015: Some observations on port congestion, vessel size and vessel sharing agreements. World Shipping Council, 1‐10.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64822326-2e8b-4b1e-9d2f-c9ed235700a6