Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates on developing a novel model-based identification technique for the simultaneous identification of severe faults such as the unbalance in the rotormand transverse crack in the shaft supported on foil bearings. With plenty of advantages over rolling element bearings or fluid film bearings, foil bearings have been used as the supported bearings in rotating machines such as fuel cell-electric air compressors, blowers, expanders, air cycle machines, etc. In the present article, a rotor model consisting of a cracked and unbalanced rotor with a disc in the middle supported byfoil bearings has been considered for easier understanding of online identification of faults in high-speed rotating machines. Dynamic equations of motion of the rotor-foil bearing system have been derived based on the equivalent stiffness concept of shaft-foil bearing, inertia force, unbalance force, and crack force relying on the switching crack concept. The solutions of the equations, i.e., time domain displacement responses, orbit plots, etc. have been obtained numerically using the Simulink inbuilt Runge-Kutta method for different values of spin speed of the rotor and ramp-up speeds. The shaft centreline orbit is found to have eight shaped and asymmetric about the axes due to presence of crack and unbalance faults. The force due to unbalance fault gets dominated over the crack force at the higher speeds. Moreover, the orbit line is also observed to be thicker at higher level of noise addition in the responses. As the switching crack force contains multiple harmonics, a full spectrum analysis has been done to investigate both the forward and backward rotor whirls. The frequencybased rotor displacement is utilized to illustrate an identification algorithm for the estimation of the dynamic coefficients of foil bearings, additive crack stiffness, and magnitude as well as phase of disc unbalance. The identification algorithm is found to be quite suitable for the estimation of system and faults parameters even with addition of different levels of noise signal and modelling errors.
Wydawca
Czasopismo
Rocznik
Tom
Strony
295--322
Opis fizyczny
Bibliogr. 65 poz., tab., rys.
Twórcy
autor
- Department of Mechanical Engineering, National Institute of Technology Manipur, Imphal West, Manipur, India
Bibliografia
- [1] N. Bachschmid, P. Pennacchi, and A. Vania. Identification of multiple faults in rotor systems. Journal of Sound and Vibration, 254(2):327–366, 2002. doi: 10.1006/jsvi.2001.4116.
- [2] J.W. Lund. Stability and damped critical speeds of a flexible rotor in fluid-film bearings. Journal of Manufacturing Science and Engineering, 96(2):509–517, 1974. doi: 10.1115/1.3438358.
- [3] E.E. Swanson and H. Heshmat. Oil-free foil bearings as a reliable, high performance backup bearing for active magnetic bearings. In ASME Turbo Expo 2002: Power for Land, Sea, and Air, pages 589-598, Amsterdam, The Netherlands, 3-6 June 2002. doi: 10.1115/GT2002-30291.
- [4] L. San Andrés and T.H. Kim. Gas foil bearings: limits for high-speed operation. In World Tribology Congress III, pages 71–72, Washington, D.C., USA, 12-16 September 2005. doi: 10.1115/WTC2005-63398.
- [5] K. Feng and X. Zhao. Effects of misalignment on the structure characteristics of bump-type foil bearings: a comparison between experimental and theoretical results. Industrial Lubrication and Tribology, 67(4):370–379, 2015. doi: 10.1108/ILT-09-2013-0101.
- [6] P. Kumar and R. Tiwari. Dynamic response analysis of an unbalanced and misaligned rotor supported on active magnetic bearings and touchdown bearings. In Proceedings of the 6th National Symposium on Rotor Dynamics, pages 407–418, NAL Bangalore, India, 2-3 July 2019. doi: 10.1007/978-981-15-5701-9_33.
- [7] P. Kumar. Dynamic analysis and identification in a cracked and unbalanced rigid rotor with two offset discs and one middle disc mounted on foil bearings. International Journal of Dynamics and Control, 1–26, 2024. doi: 10.1007/s40435-024-01411-w.
- [8] L. Rudloff, M. Arghir, O. Bonneau, and P. Matta. Experimental analyses of a first generationfoil bearing: startup torque and dynamic coefficients. Journal of Engineering for Gas Turbines and Power, 133(9):092501, 2011. doi: 10.1115/1.4002909.
- [9] C. Xiong, B. Xu, H. Yu, Z. Huang, and Z. Chen. Thermal failure optimization of foil thrust bearings. International Journal of Mechanical Sciences, 267:109026, 2024. doi: 10.1016/j.ijmecsci.2024.109026.
- [10] J.-P. Peng and M. Carpino. Calculation of stiffness and damping coefficients for elastically supported gas foil bearings. Journal of Tribology, 115(1):20–27, 1993. doi: 10.1115/1.2920982.
- [11] D. Rubio and L. San Andrés. Bump-type foil bearing structural stiffness: experiments and predictions. Journal of Engineering for Gas Turbines and Power, 128(3):653–660, 2006. doi: 10.1115/1.2056047.
- [12] V. Arora, P.J.M. van der Hoogt, R.G.K.M. Aarts, and A. de Boer. Identification of stiffness and damping characteristics of axial air-foil bearings. International Journal of Mechanics and Materials in Design, 7:231–243, 2011. doi: 10.1007/s10999-011-9161-7.
- [13] F. Balducchi, M. Arghir, and S. Gaudillere. Experimental analysis of the unbalance response of rigid rotors supported on aerodynamic foil bearings. In Turbo Expo: Power for Land, Sea, and Air, pages V07BT32A009, Düsseldorf, Germany, 16-20 June 2014. doi: 10.1115/GT2014- 25552.
- [14] J.S. Larsen, I.F. Santos, and S. von Osmanski. Stability of rigid rotors supported by air foil bearings: Comparison of two fundamental approaches. Journal of Sound and Vibration, 381:179– 191, 2016. doi: 10.1016/j.jsv.2016.06.022.
- [15] S.Y. Maraiy, W.A. Crosby, and H.A. El-Gamal. Thermohydrodynamic analysis of airfoil bearing based on bump foil structure. Alexandria Engineering Journal, 55(3):2473–2483, 2016. doi: 10.1016/j.aej.2016.06.015.
- [16] Z. Guo, K. Feng, T. Liu, P. Lyu, and T. Zhang. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings: Effects of gas film and foil structure on subsynchronous vibrations. Mechanical Systems and Signal Processing, 107:549–566, 2018. doi: 10.1016/j.ymssp.2018.02.005.
- [17] H. Li, P.H. Geng, and H. Lin. The performance of Generation II journal gas foil bearing with misalignment. Industrial Lubrication and Tribology, 72(7):857–863, 2020. doi: 10.1108/ILT- 10-2019-0418.
- [18] A. Martowicz, J. Roemer, S. Kantor, P. Zdziebko, G. Żywica, and P. Bagiński. Gas foil bearing technology enhanced with smart materials. Applied Sciences, 11(6):2757, 2021. doi: 10.3390/app11062757.
- [19] J. Kumar, D.S. Khamari, S.K. Behera, and R.K. Sahoo. A methodology for performance prediction: aerodynamic analysis of axially loaded gas foil bearing. S¯adhan¯a, 46:193, 2021. doi: 10.1007/s12046-021-01721-1.
- [20] D.S. Khamari, J. Kumar, and S.K. Behera. A review on modeling and stability aspects of gas foil bearing supported rotors. Tribology in Industry, 45(1):12–23, 2023. doi: 10.24874/ti.1381.09.22.01.
- [21] F. Xu, Z. Dong, H. Zhang, and Z. Xie. Vibration characteristics control of hybrid radial gas foil bearing-rotor system: Simulation and experiment. Mechanical Systems and Signal Processing, 198:110402, 2023. doi: 10.1016/j.ymssp.2023.110402.
- [22] H. Guan, J. Li, K. Wei, and H. Zou. Rotordynamics of a rotor radially and axially supported by active bump-type foil bearings and bump-type thrust foil bearings. Mechanical Systems and Signal Processing, 208:110995, 2024. doi: 10.1016/j.ymssp.2023.110995.
- [23] X. Zhao, C. Li, J. Du, and Y. Lu. A nonlinear model for dynamic performance analysis of gas foil bearing-rotor system considering frictional contacts. Nonlinear Dynamics, 112:5975–5996, 2024. doi: 10.1007/s11071-024-09309-0.[24] O. Jun, H. Eun, Y. Earmme, and C.-W. Lee. Modelling and vibration analysis of a simple rotor with a breathing crack. Journal of Sound and Vibration, 155(2):273–290, 1992. doi: 10.1016/0022-460X(92)90511-U.
- [25] R. Gasch. A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack. Journal of Sound and Vibration, 160(2):313–332, 1993. doi: 10.1006/jsvi.1993.1026.
- [26] C. Zhu, D.A. Robb, and D.J. Ewins. The dynamics of a cracked rotor with an active magnetic bearing. Journal of Sound and Vibration, 265(3):469–487, 2003. doi: 10.1016/S0022- 460X(03)00174-3.
- [27] A. Sekhar. Model-based identification of two cracks in a rotor system. Mechanical Systems and Signal Processing, 18(4):977–983, 2004. doi: 10.1016/S0888-3270(03)00041-4.
- [28] P. Pennacchi, N. Bachschmid, and A. Vania. A model-based identification method of trans- verse cracks in rotating shafts suitable for industrial machines. Mechanical Systems and Signal Processing, 20(8):2112–2147, 2006. doi: 10.1016/j.ymssp.2005.04.005.
- [29] S. Singh and R. Tiwari. Model based identification of crack and bearing dynamic parameters in flexible rotor systems supported with an auxiliary active magnetic bearing. Mechanism and Machine Theory, 122:292–307, 2018. doi: 10.1016/j.mechmachtheory.2018.01.006.
- [30] H. Peng and Q. He. The effects of the crack location on the whirl motion of a breathing cracked rotor with rotational damping. Mechanical Systems and Signal Processing, 123: 626–647, 2019. doi: 10.1016/j.ymssp.2019.01.029.
- [31] R. Gradzki, Z. Kulesza, and B. Bartoszewicz. Method of shaft crack detection based on squaredgain of vibration amplitude. Nonlinear Dynamics, 98:671–690, 2019. doi: 10.1007/s11071-019-05221-0.
- [32] A. Joshuva and V. Sugumaran. Crack detection and localization on wind turbine blade using machine learning algorithms: A data mining approach. Structural Durability & Health Monitoring, 13(2):181–203, 2019. doi: 10.32604/sdhm.2019.00287.
- [33] Y. Yang, W. Xia, J. Han, Y. Song, J. Wang, and Y. Dai. Vibration analysis for tooth crack detection in a spur gear system with clearance nonlinearity. International Journal of Mechanical Sciences, 157: 648–661, 2019. doi: 10.1016/j.ijmecsci.2019.05.012.
- [34] Y. Yongfeng, W. Qinyu, W. Yanlin, Q. Weiyang, and L. Kuan. Dynamic characteristics of cracked uncertain hollow-shaft. Mechanical Systems and Signal Processing, 124:36–48, 2019. doi: 10.1016/j.ymssp.2019.01.035.
- [35] X. Zhang, Y. Yang, M. Shi, A. Ming, and P. Wang. Novel energy identification method for shallow cracked rotor system. Mechanical Systems and Signal Processing, 186:109886, 2023. doi: 10.1016/j.ymssp.2022.109886.
- [36] Z. Qiao, K. Chen, C. Zhou, and H. Ma. An improved fault model of wind turbine gear drive under multi-stage cracks. Simulation Modelling Practice and Theory, 122:102679, 2023. doi: 10.1016/j.simpat. 022.102679.
- [37] B. Han, Z. Liu, P. He, and P. Yan. Rotor crack breathing under unbalanced disturbance. Journalof Sound and Vibration, 574:118236, 2024. doi: 10.1016/j.jsv.2023.118236.
- [38] P. Kumar, V. Kumar, K. Kumar, and L.S. Meena. Unbalance and dynamic parameters estimation in a rigid rotor mounted on active magnetic bearings. In Advances in Applied Mechanical Engineering, pages 363–371, NIT Warangal, India, 2-4 May 2019. doi: 10.1007/978-981-15-1201-8_41.
- [39] A.K. Jardine, D. Lin, and D. Banjevic. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7):1483–1510, 2006. doi: 10.1016/j.ymssp.2005.09.012.
- [40] J. Baker. Methods of rotor-unbalance determination. Journal of Applied Mechanics, 6(1):1–6, 1939. doi: 10.1115/1.4008884.
- [41] K. Gupta, K. Gupta, and K. Athre. Unbalance response of a dual rotor system: theory and ex- periment. Journal of Vibration and Acoustics, 115(4):427–435, 1993. doi: 10.1115/1.2930368
- [42] Y.-P. Shih and A.-C. Lee. Identification of the unbalance distribution in flexible rotors. International Journal of Mechanical Sciences, 39(7):841–857, 1997. doi: 10.1016/S0020-7403(96)00078-1.
- [43] S. Zhou and J. Shi. Active balancing and vibration control of rotating machinery: a survey. Vibration and Control, 15:1365–1374, 2009. doi: 10.1155/2016/8284625.
- [45] H.F. De Castro, K.L. Cavalca, L.W.F. De Camargo, and N. Bachschmid. Identification of un-balance forces by metaheuristic search algorithms. Mechanical Systems and Signal Processing, 24(6):1785–1798, 2010. doi: 10.1016/j.ymssp.2009.11.012.
- [46] Y. Menshikov. Identification of rotor unbalance as inverse problem of measurement. Advances in Pure Mathematics, 3(9):20–25, 2013. doi: 10.4236/apm.2013.39A1004.
- [47] P. Kumar and R. Tiwari. Finite element modelling, analysis and identification using novel trial misalignment approach in an unbalanced and misaligned flexible rotor system levitated by active magnetic bearings. Mechanical Systems and Signal Processing, 152:107454, 2021. doi: 10.1016/j.ymssp.2020.107454.
- [48] Y. Zhang, Z. Xie, L. Zhai, and M. Shao. Unbalanced vibration suppression of a rotor with Rotating-Frequency faults using signal purification. Mechanical Systems and Signal Processing, 190:110153, 2023. doi: 10.1016/j.ymssp.2023.110153.
- [49] S. Zhong and L. Hou. Numerical and experimental studies on unsupervised deep Lagrangian learning based rotor balancing method. Science China Technological Sciences, 66:1050-1061, 2023. doi: 10.1007/s11431-022-2102-3.
- [50] K. Lin, Y. Li, Y. Wu, H. Fu, J. Jiang, and Y. Chen. A deep learning-based unbalanced force iden- tification of the hypergravity centrifuge. Sensors, 23(8):3797, 2023. doi: 10.3390/s23083797.
- [51] L.A. Baltazar-Tadeo, J. Colín-Ocampo, J.G. Mendoza-Larios, A. Abúndez-Pliego, M. Nango-Blanco, A. Blanco-Ortega, and S.J. Landa-Damas. An integrated balancing method for asymmetric rotor-bearing systems: algebraic identification, modal balancing, and active bal- ancing disks. Journal of Vibration Engineering & Technologies, 11:619–645, 2023. doi: 10.1007/s42417-022-00598-6.
- [52] Y. Kang, Z. Qiu, X. Huang, Z. Kong, F. Gu, and A.D. Ball. Field simultaneous estimation of residual unbalance and bearing dynamic coefficients for double-disk rotor-bearing system using dual augmented Kalman filter. Journal of Sound and Vibration, 577:118325, 2024. doi: 10.1016/j.jsv.2024.118325.
- [53] R. Gasch. Dynamic behaviour of the Laval rotor with a transverse crack. Mechanical Systems and Signal Processing, 22(4):790–804, 2008. doi: 10.1016/j.ymssp.2007.11.023.
- [54] S. Singh and R. Tiwari. Model-based fatigue crack identification in rotors integrated with active magnetic bearings. Journal of Vibration and Control, 23(6):980–1000, 2017. doi: 10.1177/1077546315587146.
- [55] P. Kumar and R. Tiwari. Development of a novel approach for quantitative estimation of rotor unbalance and misalignment in a rotor system levitated by active magnetic bearings. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 45:769–786, 2020. doi: 10.1007/s40997-020-00364-7.
- [56] C. Shravankumar and R. Tiwari. Experimental identification of cracked rotor system parameters from the forward and backward whirl responses. Archive of Mechanical Engineering, 66(3):329– 353, 2019. doi: 10.24425/ame.2019.129679.
- [57] D.K. Roy and R. Tiwari. Development of identification procedure for the internal and external damping in a cracked rotor system undergoing forward and backward whirls. Archive of Mechanical Engineering, 66(2):133–152, 2019. doi: 10.24425/ame.2019.128446.
- [58] N. Sarmah and R. Tiwari. Analysis and identification of the additive and multiplicative fault parameters in a cracked-bowed-unbalanced rotor system integrated with an auxiliary active magnetic bearing. Mechanism and Machine Theory, 146:103744, 2020. doi: 10.1016/j.mechmachtheory.2019.103744.
- [59] L. Xiang, Y. Zhang, A. Hu, and F. Ye. Dynamic analysis and experiment investigation of a cracked dual-disc bearing-rotor system based on orbit morphological characteristics. Applied Mathematical Modelling, 80:17–32, 2020. doi: 10.1016/j.apm.2019.11.042.
- [60] G. Ranjan and R. Tiwari. On-site high-speed balancing of flexible rotor-bearing system using virtual trial unbalances at slow run. International Journal of Mechanical Sciences, 183:105786, 2020. doi: 10.1016/j.ijmecsci.2020.105786.
- [61] R. Tiwari and P. Kumar. An innovative virtual trial misalignment approach for identification of unbalance, sensor and active magnetic bearing misalignment along with its stiffness parameters in a magnetically levitated flexible rotor system. Mechanical Systems and Signal Processing, 167:108540, 2022. doi: 10.1016/j.ymssp.2021.108540.
- [62] T.H. Patel and A.K. Darpe. Experimental investigations on vibration response of misligned rotors. Mechanical Systems and Signal Processing, 23(7):2236–2252, 2009. doi: 10.1016/j.ymssp.2009.04.004.
- [63] N. Sarmah and R. Tiwari. Dynamic analysis and identification of multiple fault parameters in a cracked rotor system equipped with active magnetic bearings: a physical modelbased approach. Inverse Problems in Science and Engineering, 28(8):1103–1134, 2019. doi: 10.1080/17415977.2019.1700982.
- [64] P. Kumar and R. Tiwari. Dynamic analysis and identification of unbalance and misalignment in a rigid rotor with two offset discs levitated by active magnetic bearings: a novel trial misalignment approach. Propulsion and Power Research, 10(1):58–82, 2020. doi: 10.1016/j.jppr.2020.06.003.
- [65] M. Lal. Modeling and estimation of speed dependent bearing and coupling misalignment faults in a turbine generator system. Mechanical Systems and Signal Processing, 151:107365, 2020. doi: 10.1016/j.ymssp.2020.107365.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-647c089a-e845-428d-9ad8-3bc6ebb3f0e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.