PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Postural balance, which has a big role in daily life, is generally known as one's strength to retain stability. Balance takes advantage of the integration of multisensory inputs that work together to stabilize one's standing. Understanding the duty of each body part in postural balance has led us into modeling the human postural control system paying attention to the vestibular system in addition to other body parts and senses. Via updating the model both for the young and old adults, it is possible to mathematically understand the differences between the vestibular system of the young healthy adults and of the healthy elderly. Also, using linear control modeling, we provide quantitative predictions of the balance behavior depending on changes in sensorimotor behavior of different parts of the body and sensorimotor system. The results of this study help to understand better why the elderly tend to feel dizzy more often and why they would use other strategies compared to the ankle strategy.
Twórcy
  • Department of Mechanical Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran; Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
  • Department of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
  • Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
  • Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
Bibliografia
  • [1] Maki BE, Holliday PJ, Fernie GR. Aging and postural control: a comparison of spontaneous-and induced-sway balance tests. J Am Geriatr Soc 1990;38(1):1–9.
  • [2] Peterka Robert J. Sensorimotor integration in human postural control. J Neurophysiol 2002;88(3):1097–118.
  • [3] Fitzpatrick R, Burke D, Gandevia SC. Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances. J Neurophysiol 1996;76(6):3994–4008.
  • [4] Johansson R, Magnusson M. Human postural dynamics. Crit Rev Biomed Eng 1991;18(6):413–37.
  • [5] Van Der Kooij H, Jacobs R, Koopman B, Grootenboer H. A multisensory integration model of human stance control. Biol Cybern 1999;80(5):299–308.
  • [6] Merla JL, Spaulding SJ. The balance system: implications for occupational therapy intervention. Phys Occup Ther Geriatr 1997;15(1):21–36.
  • [7] Morasso PG, Baratto L, Capra R, Spada G. Internal models in the control of posture. Neural Netw 1999;12(7-8):1173–80.
  • [8] Collins JJ, De Luca CJ. Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp Brain Res 1993;95(2):308–18.
  • [9] Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing 2006;35(Suppl. 2):7–11.
  • [10] Peterka RJ, Loughlin PJ. Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 2004;91(1):410–23.
  • [11] Masani K, Vette AH, Popovic MR. Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments. Gait Posture 2006;23 (2):164–72.
  • [12] Maurer C, Mergner T, Peterka RJ. Multisensory control of human upright stance. Exp Brain Res 2006;171(2):231.
  • [13] Peterka RJ. Postural control model interpretation of stabilogram diffusion analysis. Biol Cybern 2000;82(4):335–43.
  • [14] Cherif A, Loram I, Zenzeri J. Force accuracy rather than high stiffness is associated with faster learning and reduced falls in human balance. Sci Rep 2020;10(1):1–13.
  • [15] Morasso P, Cherif A, Zenzeri J. State-space intermittent feedback stabilization of a dual balancing task. Sci Rep 2020;10(1):1–14.
  • [16] Goldberg JM, Wilson VJ, Angelaki DE, Cullen KE, Broussard DM, Fukushima K, et al. The vestibular system: a sixth sense. Oxford University Press; 2012.
  • [17] Van Der Kooij H, Jacobs R, Koopman B, Van Der Helm F. An adaptive model of sensory integration in a dynamic environment applied to human stance control. Biol Cybern 2001;84(2):103–15.
  • [18] Keyvanara M, Sadigh MJ. Effect of vertical vibrations on human postural balance. 2018 3rd International Conference on Control and Robotics Engineering, ICCRE 2018. 2018. pp. 178–82.
  • [19] Holly JE. Subject-coincident coordinate systems and sustained motions. Int J Theor Phys 1996;35(2):445–73.
  • [20] Iwamoto Y, Takahashi M, Shinkoda K. Differences of muscle co-contraction of the ankle joint between young and elderly adults during dynamic postural control at different speeds. J Physiol Anthropol 2017;36(1):1–9.
  • [21] Woollacott MH, Shumway-Cook A, Nashner LM. Aging and posture control: changes in sensory organization and muscular coordination. Int J Aging Hum Dev 1986;23(2):97–114.
  • [22] Berg KO, Maki BE, Williams JI, Holliday PJ, Wood-Dauphinee SL. Clinical and laboratory measures of postural balance in an elderly population. Arch Phys Med Rehabil 1992;73 (11):1073–80.
  • [23] Horak FB, Shupert CL, Mirka A. Components of postural dyscontrol in the elderly: a review. Neurobiol Aging 1989;10 (6):727–38.
  • [24] Laughton CA, Slavin M, Katdare K, Nolan L, Bean JF, Kerrigan DC, et al. Aging, muscle activity, and balance control: Physiologic changes associated with balance impairment. Gait Posture 2003;18(2):101–8.
  • [25] Amiridis IG, Hatzitaki V, Arabatzi F. Age-induced modifications of static postural control in humans. Neurosci Lett 2003;350(3):137–40.
  • [26] Wiesmeier IK, Dalin D, Maurer C. Elderly use proprioception rather than visual and vestibular cues for postural motor control. Front Aging Neurosci 2015;7:97.
  • [27] Maurer C, Peterka RJ. A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol 2005;93(1):189–200.
  • [28] Santos DA, Duarte M. A public data set of human balance evaluations. PeerJ 2016;4e2648.
  • [29] Morasso P, Cherif A, Zenzeri J. Quiet standing: the single inverted pendulum model is not so bad after all. PLoS One 2019;14(3):1–20.
  • [30] Gage WH, Winter DA, Frank JS, Adkin AL. Kinematic and kinetic validity of the inverted pendulum model in quiet standing. Gait Posture 2004;19(2):124–32.
  • [31] Shaffer SW, Harrison AL. Aging of the somatosensory system: a translational perspective. Phys Ther 2007;87 (2):193–207.
  • [32] Magnusson M, Enbom H, Johansson R, Pyykkö I. Significance of pressor input from the human feet in anterior-posterior postural control: the effect of hypothermia on vibration-induced body-sway. Acta Otolaryngol 1990;110(3-4):182–8.
  • [33] Suzuki Y, Nomura T, Casadio M, Morasso P. Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model. J Theor Biol 2012;310:55–79.
  • [34] Bottaro A, Yasutake Y, Nomura T, Casadio M, Morasso P. Bounded stability of the quiet standing posture: an intermittent control model. Hum Mov Sci 2008;27(3):473–95.
  • [35] Chagdes JR, Rietdyk S, Haddad JM, Zelaznik HN, Cinelli ME, Denomme LT, et al. Limit cycle oscillations in standing human posture. J Biomech 2016;49(7):1170–9.
  • [36] Casadio M, Morasso PG, Sanguineti V. Direct measurement of ankle stiffness during quiet standing: implications for control modelling and clinical application. Gait Posture 2005;21(4):410–24.
  • [37] Ogata K. Modern control engineering. 5th ed. 2009.
  • [38] Winters JM, Stark L. Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans Biomed Eng 1985; (10):826–39.
  • [39] Huterer M, Cullen KE. Vestibuloocular reflex dynamics during high-frequency and high-acceleration rotations of the head on body in Rhesus monkey. J Neurophysiol 2002;88(1):13–28.
  • [40] Applegate C, Gandevia SC, Burke D. Changes in muscle and cutaneous cerebral potentials during standing. Exp Brain Res 1988;71(1):183–8.
  • [41] Lavoie BA, Cody FWJ, Capaday C. Cortical control of human soleus muscle during volitional and postural activities studied using focal magnetic stimulation. Exp Brain Res 1995;103(1):97–107.
  • [42] Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM. Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng 1996;43(9):956–66.
  • [43] Barin K. Evaluation of a generalized model of human postural dynamics and control in the sagittal plane. Biol Cybern 1989;61(1):37–50.
  • [44] Sturnieks DL, St George R, Lord SR. Balance disorders in the elderly. Neurophysiol Clin 2008;38(6):467–78.
  • [45] Barin K, Dodson EE. Dizziness in the elderly. Otolaryngol Clin North Am 2011;44(2):437–54.
  • [46] Fozard JL, Vercruyssen M, Reynolds SL, Hancock PA, Quilter RE. Age differences and changes in reaction time: the Baltimore longitudinal study of aging. J Gerontol 1994;49(4): P179–89.
  • [47] Bronstein A, editor. Oxford textbook of vertigo and imbalance. OUP Oxford; 2013.
  • [48] Runge CF, Shupert CL, Horak FB, Zajac FE. Ankle and hip postural strategies defined by joint torques. Gait Posture 1999;10(2):161–70.
  • [49] Bingham JT, Choi JT, Ting LH. Stability in a frontal plane model of balance requires coupled changes to postural configuration and neural feedback control. J Neurophysiol 2011;106(1):437–48.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-646eb3bc-374a-4a82-ac1c-ba3b347df828
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.