PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trace metal concentrations in Pleurozium schreberi and Taraxacum officinale along the road No. 7

Identyfikatory
Warianty tytułu
PL
Zawartości metali śladowych w Pleurozium schreberi i Taraxacum officinale wzdłuż drogi Nr 7
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to test two plant species, the common dandelion Taraxacum officinale and moss Pleurozium schreberi, as bio monitors of trace metal pollution emitted by motor vehicles. The samples of the moss Pleurozium schreberi (green segments) and the common dandelion Taraxacum officinale (leaves) were collected within 12 transects along the state road No. E77 near Chyzne, Sothern Poland. The transects were located on the eastern and western side of the road (downwind and upwind towards prevailing winds), at the following distances from the road: 5, 50, 100, 300 500 and 600 m. Total concentrations of Cr, Cu, Ni, Pb, Sb and Zn in the plant material were determined. The studied species accumulated trace metals in the similar amounts. Statistically significant differences in metal concentrations between two plant species were observed only in the case of Cu and Pb. Copper concentrations were higher in the common dandelion, while the moss Pleurozium schreberi accumulated considerably higher amounts of Pb. There is a statistically significant negative correlation between the trace metal concentrations in plants and the distance to the road. There are also statistically significant differences in concentrations of Cr, Cu, Ni, Pb and Zn in the common dandelion between the samples collected from the opposite sides of the road: upwind/downwind towards the prevailing wind direction at the distance up to 300 meters. The concentrations are higher on the downwind side of the road.
Rocznik
Strony
651--663
Opis fizyczny
Bibliogr. 52 poz., rys., wykr., tab.
Twórcy
  • Department of Sustainability and Environmental Management, Faculty of Geography and Biology, Pedagogical University of Cracow, ul. Podchorążych 2, 30-084 Kraków
autor
  • AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Environmental Management and Protection, al. A. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • [1] Zechmeister H Hohenwallner D Riss A Hanus-Illnar A. Estimation of element deposition derived from road traffic sources by using mosses. Environ Pollut. 2005;138:238-49. DOI: 10.1016/j.envpol.2005.04.005.
  • [2] Wessolek G Kluge B Toland A Nehls T Klingelmann E Rim YN et al. Urban soils in the vadose zone. In: Endlicher W editor. Perspectives in Urban Ecology. Berlin: Springer; 2011: 89-133. ISBN: 9783642177309. DOI: 10.1007/978-3-642-17731-6.
  • [3] Zechmeister H Hagendorfer H Hohenwallner D Hanus-Illnar A Riss A. Analyses of platinum group elements in mosses as indicators of road traffic emissions in Austria. Atmosph Environ. 2006;40:7720-32. DOI: 10.1016/j.atmosenv.2006.08.018.
  • [4] Harrison RM Tilling R Romero M Harrad S Jarvis K. A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmosph Environ. 2003;37:2391-402. DOI: 10.1016/S1352-2310(03)00122-5.
  • [5] Ozaki H Watanabe I Kuno K. As Sb and Hg distribution and pollution sources in the roadside soil and dust around Kamikochi Chubu Sangaku National Park Japan. Geochem J. 2004;38:473-84. DOI: 10.2343/geochemj.38.473.
  • [6] Lindgren Ǻ. Asphalt wear and pollution transport. Sci Total Environ. 1996;189-190:281-86. DOI: 10.1016/0048-9697(96)05220-5.
  • [7] Turer D. Effect of non-vehicular sources on heavy metal concentrations of roadside soils. Water Air Soil Pollut. 2005;166:251-64. DOI: 10.1007/s11270-005-7378-5.
  • [8] Zehetner F Rosenfellner U Mentler A Gerzabek MH. Distribution of road salt residues heavy metals and polycyclic aromatic hydrocarbons accross a highway-forest interface. Water Air Soil Pollut. 2009;198:125-32. DOI: 10.1007/s11270-008-9831-8.
  • [9] Folkeson L Bękken T Brenčič M Dawson A Frančois D Kuřímská P et al. Sources and fate of water contaminants in roads. Geotechnical Geological and Earthquake Engineering. In: Dawson A editor. Water in Road Structures. Dordrecht: Springer; 2009: 107-46. ISBN: 9781402085611. DOI: 10.1007/978-1-4020-8562-8_6.
  • [10] Kluge B Wessolek G. Heavy metal pattern and solute concentrations in soils along the oldest highway of the world - the AVUS Autobahn. Environ Monit Assess. 2012;184:6469-81. DOI: 10.1007/s10661-011-2433-8.
  • [11] Hjortenkrans D Bergbäck B Häggerud A. New metal emission patterns in road traffic environments. Environ Monit Assess. 2006;117:85-98. DOI: 10.1007/s10661-006-7706-2.
  • [12] Piron-Frenet M Bureau F Pineau A. Lead accumulation in surface roadside soil. Its relationship to traffic density and meteorological parameters. Sci Total Environ. 1994;144:297-304. DOI: 10.1016/0048-9697(94)90449-9.
  • [13] Viard B Pihan F Promeyrat S Pihan J-C. Integrated assessment of heavy metal (Pb Zn Cd) highway pollution: bioaccumulation in soil Graminaceae and land snails. Chemosphere. 2004;55:1349-59. DOI: 10.1016/j.chemosphere.2004.01.003.
  • [14] Saeedi M Hosseinzadeh M Jamshidi A Pajooheshfar SP. Assessment of heavy metal concentration and leaching characteristics in highway side soils Iran. Envion Monit Assess. 2009;151:231-41. DOI: 10.1007/s10661-008-0264-z.
  • [15] Masoudi SN Ghajar Sepanlou M Bahmanyar MA. Distribution of lead cadmium copper and zinc in roadside soil of Sari-Ghaemshahr road Iran. Afr J Agric Res. 2012;7:198-204. DOI: 10.5897/AJAR11.1771.
  • [16] Hagler GS Baldauf RW Thoma ED Long TR. Ultrafine particles near a major roadway in Raleigh North Carolina: Downwind attenuation and correlation with traffic-related pollutants. Atmosph Environ. 2009;43:1229-34. DOI: 10.1016/j.atmosenv.2008.11.024.
  • [17] Bernhardt-Römermann M Kirchner M Kudernatsch T Jakobi G Fischer A. Changed vegetation composition in coniferous forests near to motorways in Southern Germany: the effects of traffic-born pollution. Environ Pollut. 2006;143:572-81. DOI: 10.1016/j.envpol.2005.10.046.
  • [18] Markert BA Breure AM Zechmeister HG. Bioindicators and Biomonitors. Principles Concepts and Application. Amsterdam: Elsevier; 2003. ISBN: 9780080441771.
  • [19] Kłos A Aleksiayenak YA Ziembik Z Rajfur M Jerz D Wacławek M et al. The use of neutron activation analysis in the biomonitoring of trace element deposition in the Opole Province. Ecol Chem Eng S. 2013;20(4):677-87. DOI: 10.2478/eces-2013-0046.
  • [20] Zinicovscaia I Aničić Urošević M Vergel K Vieru E Frontasyeva MV Povar I et al. Active moss biomonitoring of trace elements air pollution in Chisinau Republic of Moldova. Ecol Chem Eng S. 2018;25(3):361-72. DOI: 10.1515/eces-2018-0024.
  • [21] Qarri F Lazo P Allajbeu S Bekteshi L Kane S Stafilov T. The evaluation of air quality in Albania by moss biomonitoring and metals atmospheric deposition. Arch Environ Contam Toxicol. 2019;76:554-71. DOI: 10.1007/s00244-019-00608-x.
  • [22] Jóźwiak MA Jóźwiak M. Bioindication as challenge in modern environmental protection. Ecol Chem Eng S. 2014;21(4):577-91. DOI: 10.1515/eces-2014-0041.
  • [23] Kłos A Bochenek Z Bjerke JW Zagajewski B Ziółkowski D Ziembik Z et al. The use of mosses in biomonitoring of selected areas in Poland and Spitsbergen in the years from 1975 to 2014. Ecol Chem Eng S. 2015;22(2):201-18. DOI: 10.1515/eces-2015-0011.
  • [24] Grodzińska K Szarek-Łukaszewska G Godzik B. Survey of heavy metal deposition in Poland using mosses as indicators. Sci Total Environ. 1999;229:41-51. DOI: 10.1016/S0048-9697(99)00071-6.
  • [25] Szarek-Łukaszewska G Grodzińska S Braniewski S. Heavy metal concentration in the moss Pleurozium schreberi in the Niepołomice forest Poland: changes during 20 years. Environ Monit Assess. 2002;79:231-7. DOI: 10.1023/A:1020226526451.
  • [26] Suchara I Sucharová J Hola M Reimann C Boyd R Filzmoser P et al. The performance of moss grass and 1- and 2-year old spruce needles as bio indicators of contamination: A comparative study at the scale of the Czech Republic. Sci Total Environ. 2011;409:2281-97. DOI: 10.1016/j.scitotenv.2011.02.003.
  • [27] Kosior G Samecka-Cymerman A Kolon K Kempers AJ. Bioindication capacity of metal pollution of native and transplanted Pleurozium schreberi under various levels of pollution. Chemosphere. 2010;81:321-6. DOI: 10.1016/j.chemosphere.2010.07.029.
  • [28] Suoranta T Niemelä M Poikolainen J Piispanen J Bokhari SNH Meisel T et al. Active biomonitoring of palladium platinum and rhodium emissions from road traffic using transplanted moss. Environ Sci Pollut Res. 2016;23:16790-801. DOI: 10.1007/s11356-016-6880-1.
  • [29] Kabata-Pendias A Dudka S. Trace metal contents of Taraxacum officinale (dandelion) as a convenient environmental indicator. Environ Geochem Hlth. 1991;13(2):108-13. DOI: 10.1007/BF01734301.
  • [30] Djingova R Kuleff I. Monitoring of heavy metal pollution by Taraxacum officinale. In: Markert B editor. Plants as Biomonitors: Indicators for Heavy Metals in the Terrestrial Environment. New York: VCH; 1993: 435-60. ISBN: 1560812729. DOI: 10.1002/pca.2800060209.
  • [31] Królak E Marciniuk J Popijantus K Wasilczuk P Kasprzykowski Z. Environmental factors determining the accumulation of metals: Cu Zn Mn and Fe in tissues of Taraxacum sp. sect. Taraxacum. Bull Environ Contam Toxicol. 2018;101:68-74. DOI: 10.1007/s00128-018-2356-y.
  • [32] Gómez-Arroyo S Barba-García A Arenas-Huertero F Cortés-Eslava J de la Mora MG García-Martínez R. Indicators of environmental contamination by heavy metals in leaves of Taraxacum officinale in two zones of the metropolitan area of Mexico City. Environ Sci Pollut Res Int. 2018;25:4739-49. DOI: 10.1007/s11356-017-0809-1.
  • [33] Djingova R Kovacheva P Wagner G Markert B. Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Sci Total Environ. 2003;308:235-46. DOI: 10.1016/S0048-9697(02)00677-0.
  • [34] Ligocki M Tarasewicz Z Zygmunt A Aniśko M. The common dandelion (Taraxacum officinale) as an indicator of anthropogenic toxic metal pollution of environment. Acta Sci Pol Zootechnica. 2011;10:73-82. http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-6d753b43-06ef-4336-8972-e327e99c11b9.
  • [35] Petrova S Yurukova L Velcheva I. Taraxacum officinale as a bio monitor of metals and toxic elements (Plovdiv Bulgaria). Bulg J Agric Sci. 2013;19:241-7. https://www.agrojournal.org/19/02-10.pdf.
  • [36] Kováčik J Dudáš M Hedbavny J Mártonfi P. Dandelion Taraxacum linearisquameum does not reflect soil metal content in urban localities. Environ Pollut. 2016;218:160-7. DOI: 10.1016/j.envpol.2016.08.030.
  • [37] Czarnowska K Milewska A. The content of heavy metals in an indicator plant (Taraxacum officinale) in Warsaw. Pol J Environ Stud. 2000;9:125-8. http://www.pjoes.com/The-Content-of-Heavy-Metals-in-an-Indicator-Plant-Taraxacum-Officinale-from-the-Warsaw,87286,0,2.html.
  • [38] Giacomino A Malandrino M Colombo ML Miaglia S Maimone P Blancato S et al. Metal content in dandelion (Taraxacum officinale) leaves: influence of vehicular traffic and safety upon consumption as food. J Chem. 2016;9. DOI: 10.1155/2016/9842987.
  • [39] Mleczek P Borowiak K Budka A Niedzielski P. Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road. Environ Sci Pollut Res Int. 2018;25:23695-711. DOI: 10.1007/s11356-018-2428-x.
  • [40] Beck H Zimmermann N McVicar T Vergopolan N Berg A Wood E. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data. 2018;5:180214. DOI: 10.1038/sdata.2018.214.
  • [41] Kundzewicz Z Jania J. Extreme Meteorological and Hydrological Events in Poland. Geographia Polonica 2007;80. Warszawa: Institute of Geography and Spatial Organization Polish Academy of Sciences; ISSN: 00167282. http://rcin.org.pl/igipz/Content/107/GP_80_2_cala.pdf.
  • [42] Dijkstra L Poelman H Ackermans L. Road Transport Performance in Europe. European Commission Luxembourg: Publications Office of the European Union; 2019. ISBN: 9789276098072. DOI: 10.2776/046835.
  • [43] Maňkovska B Godzik B Badea O Shiparyk Y Moravcik P. Chemical and morphological characteristic of key tree species in the Carpathian Mountains. Environ Pollut. 2004;130:41-54. DOI: 10.1016/j.envpol.2003.10.020.
  • [44] Sawidis T Breuste J Mitrovic M Pavlovic P Tsigaridas K. Trees as bio indicator of heavy metal pollution in three European cities. Environ Pollut. 2011;159:3560-70. DOI: 10.1016/j.envpol.2011.08.008.
  • [45] Kabata-Pendias A Pendias H. Trace Elements in Soils and Plants. Boca Raton London New York Washington D.C: CRC Press; 2001. ISBN: 0849315751. http://base.dnsgb.com.ua/files/book/Agriculture/Soil/Trace-Elements-in-Soils-and-Plants.pdf.
  • [46] Korzeniowska J Panek E. The content of trace metals (Cd Cr Cu Ni Pb Zn) in selected plant species (moss Pleurozium schreberi dandelion Taraxacum officianale spruce Picea abies) along the road Cracow -Zakopane. Geomatics Environ Eng. 2012;6(1):43-50. DOI: 10.7494/geom.2012.6.1.43.
  • [47] Harmens H Norris DA Sharps K Mills G Alber R Aleksiayenak Y et al. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut. 2015;200:93-104. DOI: 10.1016/j.envpol.2015.01.036.
  • [48] Krommer V Zechmeister H Roder I Scharf S Hanus-Illnar A. Monitoring atmospheric ion in the biosphere reserve Wienerwald by a combined approach of biomonitoring methods and technical measurements. Chemosphere. 2007;67:1956-68. DOI: 10.1016/j.chemosphere.2006.11.060.
  • [49] Kłos A Ziembik Z Rajfur M Dołhańczuk-Śródka A Bochenek Z Bjerke JW et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ. 2018;627:438-49. DOI: 10.1016/j.scitotenv.2018.01.211.
  • [50] Roorda-Knape MC Janssen NAH De Hartog JJ Van Vliet PHN Harssema H Brunekreef B. Air pollution from traffic in city districts near major motorway. Atmosph Environ. 1998;32:1921-30. DOI: 10.1016/S1352-2310(97)00496-2.
  • [51] Garcia R Hart JE Davis ME Reaser P Natkin J Laden F et al. Effects of wind on background particle concentrations at truck freight terminals. J Occupational Environ Hygiene. 2007;4:36-48. DOI: 10.1080/15459620601070302.
  • [52] McGee MA Kamal AS McGee JK Wood CE Dye JA Krantz QT et al. Differential effects of particulate matter upwind and downwind of an urban freeway in an allergic mouse model. Environ Sci Technol. 2015;49:3930-9. https://pubs.acs.org/doi/10.1021/es506048k.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64660402-3381-4860-a8ce-498971c1e6a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.