PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of graphite nanoplatelets on spark plasma sintered and conventionally sintered aluminum-based nanocomposites developed by powder metallurgy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, aluminum (Al)-based nanocomposites reinforced with graphite nanoplatelets (GnPs) have been fabricated by conventional sintering as well as spark plasma sintering (SPS) techniques, and their microstructure and mechanical properties have been studied. The powder metallurgy (PM) route has been adopted to fabricate the various Al–GnP nanocomposites. Characterization of the powder mixtures and the nanocomposites has been carried out through different characterization techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. Compressive strength, Young's modulus, density, and Vickers microhardness of the various nanocomposites have also been determined. The HRTEM results show the formation of nonstoichiometric Al4C3 nanoparticles – during both conventional sintering and SPS – at the interface of the Al grains and GnP, which worsen the mechanical properties of the nanocomposites. SPSed nanocomposites show superior mechanical properties due to higher densification, finer grain size, and homogeneous nanofiller dispersion in the Al matrix, compared to the conventionally sintered Al–GnP nanocomposites.
Wydawca
Rocznik
Strony
346--370
Opis fizyczny
Bibliogr. 72 poz., rys.
Twórcy
  • Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, Odisha 769008, India
  • Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, Odisha 769008, India
  • Department of Material Science and Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
  • Department of Material Science and Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
Bibliografia
  • [1] Kumar HP, Xavior MA. Graphene reinforced metal matrix composite (GRMMC): A review. Procedia Eng. 2014;97:1033–40. https://doi.org/10.1016/j.proeng.2014.12.381
  • [2] Miracle DB. Metal matrix composites – From science to technological significance. Compos Sci Technol. 2005;65:2526–2540. https://doi.org/10.1016/j.compscitech.2005.05.027
  • [3] Moghadam AD, Schultz BF, Ferguson JB, Omrani E, Rohatgi PK, Gupta N. Functional metal matrix composites: Self-lubricating, self-healing, and nanocomposites-An Outlook. JOM. 2014;66:872–81. https://doi.org/10.1007/s11837-014-0948-5
  • [4] Moghadam AD, Omrani E, Menezes PL, Rohatgi PK. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – A review. Compos Part B. 2015;77:402–20. https://doi.org/10.1016/j.compositesb.2015.03.014
  • [5] Shin SE, Choi HJ, Shin JH, Bae DH. Strengthening behavior of few-layered graphene/aluminum composites. Carbon. 2015;82:143–51. https://doi.org/10.1016/j.carbon.2014.10.044
  • [6] Bisht A, Srivastava M, Kumar RM, Lahiri I, Lahiri D. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater Sci Eng. 2017;695:20–8. https://doi.org/10.1016/j.msea.2017.04.009
  • [7] Georgakilas V, Perman JA, Tucek J, Zboril R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015;115:4744–822. https://doi.org/10.1021/cr500304f
  • [8] Dixit S, Mahata A, Mahapatra DR, Kailas SV, Chattopadhyay K. Multi-layer graphene reinforced aluminum – Manufacturing of high strength composite by friction stir alloying. Compos Part B. 2018;136:63–71. https://doi.org/10.1016/j.compositesb.2017.10.028
  • [9] Saboori A, Novara C, Pavese M, Badini C, Giorgis F, Fino P, An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy. J Mater Eng Perform. 2017;26:993–9. https://doi.org/10.1007/s11665-017-2522-0
  • [10] Shrivastava P, Alam SN, Panda D, Sahoo SK, Maity T, Biswas K. Effect of addition of multi-walled carbon nanotube/graphite nanoplatelets hybrid on the mechanical properties of aluminium. Diam Relat Mater. 2020;104:107715. https://doi.org/10.1016/j.diamond.2020.107715
  • [11] Rashad M, Pan F, Tang A, Asif M. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog Nat Sci Mater Int. 2014;24:101–108. https://doi.org/10.1016/j.pnsc.2014.03.012
  • [12] Yolshina LA, Muradymov RV, Vichuzhanin DI, Smirnova EO. Enhancement of the mechanical properties of aluminum-graphene composites. AIP Conference Proc. 2016;1785:040093. https://doi.org/10.1063/1.4967150
  • [13] Baradeswaran A, Perumal AE. Wear and mechanical characteristics of Al 7075/graphite composites. Compos Part B. 2014;56:472–6. https://doi.org/10.1016/j.compositesb.2013.08.073
  • [14] Kurşun A, Bayraktar E, Enginsoy HM. Experimental and numerical study of alumina reinforced aluminum matrix composites: Processing, microstructural aspects and properties. Compos Part B. 2016;90:302–14. https://doi.org/10.1016/j.compositesb.2016.01.006
  • [15] Bastwros M, Kim GY, Zhu C, Zhang K, Wang S, Tang X, et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos Part B. 2014;60:111–8. https://doi.org/10.1016/j.compositesb.2013.12.043
  • [16] Shrivastava P, Alam SN, Panda D, Sahoo SK, Maity T, Biswas K. Development and mechanical properties investigation of Cu-MWCNT-graphite nanoplatelets hybrid nanocomposites. Diam Relat Mater. 2021;117:108467. https://doi.org/10.1016/j.diamond.2021.108467
  • [17] Boostani AF, Yazdani S, Mousavian RT, Tahamtan S, Khosroshahi RA, Wei D, et al. Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites. Mater Des. 2015;88:983–9. https://doi.org/10.1007/s12633-019-00183-9
  • [18] Dasari BL, Nouri JM, Brabazon D, Naher S. Graphene and derivatives – Synthesis techniques, properties and their energy applications. Energy. 2017;140:766–78. https://doi.org/10.1016/j.energy.2017.08.048
  • [19] Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D, et al. Graphene–aluminum nanocomposites. Mater Sci Eng A. 2011;528:7933–7. https://doi.org/10.1016/j.msea.2011.07.043
  • [20] Ju JM, Wang G, Sim KH. Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties. J Alloys Compd. 2017;704:585–92. https://doi.org/10.1016/j.jallcom.2017.01.314
  • [21] Dutkiewicz J, Ozga P, Maziarz W, Pstruś J, Kania B, Bobrowski P, et al. Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets. Mater Sci Eng A. 2015;628:124–34. https://doi.org/10.1016/j.msea.2015.01.018
  • [22] Chang YH, Huang D, Jia C, Cui Z, Wang C, Liang D. Influence of plasma on the densification mechanism of SPS under multi-field effect. Int J Miner Metall Mater. 2014;21:906–12. https://doi.org/10.1007/s12613-014-0988-4
  • [23] Nie JH, Jia CC, Shi N, Zhang Y, Li Y, Jia X. Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes. Int J Miner Metall Mater. 2011;18:695–702. https://doi.org/10.1007/s12613-011-0499-5
  • [24] Dimiev AM, Shukhina K, Behabtu N, Pasquali M, Tour JM. Stage transitions in graphite intercalation compounds: Role of the graphite structure. J Phys Chem C. 2019;123:19246–53. https://doi.org/10.1021/acs.jpcc.9b06726
  • [25] Walker P, editors. Handbook of Metal Etchants. 1st ed. New York: CRC Press; 2019.
  • [26] Naeem M, Kuan HC, Michelmore A, Yu S, Mouritz AP, Chelliah SS, et al. Epoxy/graphene nanocomposites prepared by in-situ microwaving. Carbon. 2021;177:271–81. https://doi.org/10.1016/j.carbon.2021.02.059
  • [27] Drzal LT, Fukushima H. Exfoliated graphite nanoplatelets (xGnP): A carbon nanotube alternative. NSTI Nanotech. 2006;1:170–3.
  • [28] Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectros Relat Phenomena. 2014;195:145–54. https://doi.org/10.1016/j.elspec.2014.07.003
  • [29] Chen G, Weng W, Wu D, Wu C, Lu J, Wang P, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon. 2004;42:753–9. https://doi.org/10.1016/j.carbon.2003.12.074
  • [30] Afanasov IM, Shornikova ON, Kirilenko DA, Vlasov II, Zhang L, Verbeeck J, et al. Graphite structural transformations during intercalation by HNO3 and exfoliation. Carbon. 2010;48:1862–5. https://doi.org/10.1016/S1872-5805(11)60085-1
  • [31] Dutta A. Fourier transform infrared spectroscopy. In: Spectroscopy Methods Nanomater Character. Elsevier;2017. pp. 73–93.
  • [32] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–65. https://doi.org/10.1016/j.carbon.2007.02.034
  • [33] Sinha S, Warner JH. Recent progress in using graphene as an ultrathin transparent support for transmission electron microscopy. Small Struct. 2021;2:2000049. https://doi.org/10.1002/sstr.202000049
  • [34] Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61:14095–07. https://doi.org/10.1103/PhysRevB.61.14095
  • [35] Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8:235–246. https://doi.org/10.1038/nnano.2013.46
  • [36] Yang G, Li L, Lee WB, Ng MC. Structure of graphene and its disorders: A review. Sci Technol Adv Mater. 2018;19:613–48. https://doi.org/10.1080/14686996.2018.1494493
  • [37] Wang G, Yang J, Park J, Gou X, Wang B, Liu H, et al. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C. 2008;112:8192–95. https://doi.org/10.1021/jp710931h
  • [38] Tian WM, Li SM, Wang B, Chen X, Liu JH, Yu M. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int J Miner Metall Mater. 2016;23:723–9. https://doi.org/10.1007/s12613-016-1286-0
  • [39] Manoratne CH, Rosa SR, Kottegoda IR. XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite. Mater Sci Res India. 2017;14:19–0. https://doi.org/10.13005/msri/140104
  • [40] Thema FT, Moloto MJ, Dikio ED, Nyangiwe NN, Kotsedi L, Maaza M, et al. Syntehies and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. J Chem. 2013;1:1–6. https://doi.org/10.1155/2013/150536
  • [41] Jeyasimman D, Sivaprasad K, Sivasankaran S, Narayanasamy R. Fabrication and consolidation behavior of Al 6061 nanocomposite powders reinforced by multi-walled carbon nanotubes. Powder Technol. 2014;258:189–7. https://doi.org/10.1016/j.powtec.2014.03.039
  • [42] Kuzumaki T, Miyazawa K, Ichinose H, Ito K. Processing of carbon nanotube reinforced aluminum composite. J Mater Res. 1998;13:2445–49. https://doi.org/10.1557/JMR.1998.0340
  • [43] Heping L, Fenger S, Yibo G, Shaolei C, Xingbin J. Preparation of graphene coated aluminum composite powders by high-energy ball milling. IOP Conf Ser Mater Sci Eng. 2019;544:012043. https://doi.org/10.1088/1757-899X/544/1/012043
  • [44] Kumar SN, Keshavamurthy R, Haseebuddin MR, Koppad PG. Mechanical properties of aluminium-graphene composite synthesized by powder metallurgy and hot extrusion. Trans Indian Inst Met. 2017;70:605–13. https://doi.org/10.1007/s12666-017-1070-5
  • [45] Wang J, Guo LN, Lin WM, Chen J, Liu CL, Zhang S, et al. Effect of the graphene content on the microstructures and properties of graphene/aluminum composites. New Carbon Mater. 2019;34:275–85. https://doi.org/10.1016/s1872-5805(19)60016-8
  • [46] Kwon H, Park DH, Silvain JF, Kawasaki A. Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos Sci Technol. 2010;70:546–50. https://doi.org/10.1016/j.compscitech.2009.11.025
  • [47] Zhou W, Yamaguchi T, Kikuchi K, Nomura N, Kawasaki A. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater. 2017;125:369–76. https://doi.org/10.1016/j.actamat.2016.12.022
  • [48] Etter T, Schulz P, Weber M, Metz J, Wimmler M, Löffler JF, et al. Aluminium carbide formation in interpenetrating graphite/aluminium composites. Mater Sci Eng A. 2007;448:1–6. https://doi.org/10.1016/j.msea.2006.11.088
  • [49] Kurita H, Kwon H, Estili M, Kawasaki A. Multi-walled carbon nanotube-aluminum matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion. Mater Trans. 2011;52:1960–65. https://doi.org/10.2320/matertrans.M2011146
  • [50] Chen B, Shen J, Ye X, Imai H, Umeda J, Takahashi M, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon. 2017;114:198–8. https://doi.org/10.1016/j.carbon.2016.12.013
  • [51] Zhang Z, Chen DL. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr Mater. 2006;54:1321–6. https://doi.org/10.1016/j.scriptamat.2005.12.017
  • [52] Ma K, Wen H, Hu T, Topping TD, Isheim D, Seidman DN, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014;62:141–5. https://doi.org/10.1016/j.actamat.2013.09.042
  • [53] Ovid’ko IA, Sheinerman AG. Nanoparticles as dislocation sources in nanocomposites. J Phys Condens Matter. 2006;18:L225–2. https://doi.org/10.1088/0953-8984/18/19/L01
  • [54] Vo NQ, Sorensen J, Klier EM, Zadeh AS, Bayansan D, Seidman DN, et al. Development of a precipitation-strengthened matrix for non-quenchable aluminum metal matrix composites. JOM. 2016;68:1915–24. https://doi.org/10.1007/s11837-016-1896-z
  • [55] Zhang J, Chen Z, Zhao J, Jiang Z. Microstructure and mechanical properties of aluminium-graphene composite powders produced by mechanical milling. Mech Adv Mater Mod Process. 2018;4:1–9. https://doi.org/10.1186/s40759-018-0037-5
  • [56] Sharifi EM, Enayati MH, Karimzadeh F. Fabrication and characterization of Al-Al4C3 nanocomposite by mechanical alloying. Int J Mod Phys Conf Ser. 2012;05:480–7. https://doi.org/10.1142/S2010194512002371
  • [57] Azarniya A, Safavi MS, Sovizi S, Azarniya A, Chen B, Hosseini HM, et al. Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites. Metals (Basel). 2017;7:384. https://doi.org/10.3390/met7100384
  • [58] Khalili D. Graphene oxide: A promising carbocatalyst for the regioselective thiocyanation of aromatic amines, phenols, anisols and enolizable ketones by hydrogen peroxide/KSCN in water. New J Chem. 2016;40:2547–53. https://doi.org/10.1039/C5NJ02314A
  • [59] Anselmi-Tamburini U. Spark plasma sintering. In: Encyclopedia of Materials: Technical Ceramics and Glasses. Elsevier; 2021. pp. 294–310. https://doi.org/10.1016/B978-0-12-803581-8.11730-8
  • [60] Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng A. 2000;287:183–8. https://doi.org/10.1016/S0921-5093(00)00773-5
  • [61] Kwon H, Estili M, Takagi K, Miyazaki T, Kawasaki A. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon. 2009;47:570–7. https://doi.org/10.1016/j.carbon.2008.10.041
  • [62] Awotunde MA, Adegbenjo AO, Obadele BA, Okoro M, Shongwe BM, Olubambi PA. Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review. J Mater Res Technol. 2019;8:2432–49. https://doi.org/10.1016/j.jmrt.2019.01.026
  • [63] Gao X, Yue H, Guo E, Zhang S, Wang B, Guan E, et al. Preparation and tribological properties of homogeneously dispersed graphene-reinforced aluminium matrix composites. Mater Sci Technol. 2018;34:1316–22. https://doi.org/10.1080/02670836.2018.1446869
  • [64] Lee JH, Kim BN, Jang BK. Non-uniform sintering behavior during spark plasma sintering of Y2O3. Ceram Int. 2020;46:4030–4. https://doi.org/10.1016/j.ceramint.2019.10.070
  • [65] Rohatgi PK, Tabandeh-Khorshid M, Omrani E, Lovell MR, Menezes PL. Tribology of metal matrix composites. In: Tribology Science Engineering. New York: Springer;2013. pp. 233–268. https://doi.org/10.1007/978-1-4614-1945-7_8
  • [66] Smirnov A, Peretyagin P, Pinargote NWS, Gershman I, Bartolomé JF. Wear behavior of graphene-reinforced alumina-silicon carbide whisker nanocomposite. Nanomaterials. 2019;9:151. https://doi.org/10.3390/nano9020151
  • [67] Chih A, Ansón-Casaos A, Puértolas JA. Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol Int. 2017;116:295–2. https://doi.org/10.1016/j.triboint.2017.07.027
  • [68] Kumar HGP, Xavior MA. Tribological aspects of graphene-aluminum nanocomposites. In: Kyzas GZ, Mitropoulos AC, editors. Graphene Materials - Structure Properties and Modifications. IntechOpen; 2017. https://doi.org/10.5772/67475
  • [69] Zhang J, Chen Z, Wu H, Zhao J, Jiang Z. Effect of graphene on the tribolayer of aluminum matrix composite during dry sliding wear. Surf Coatings Technol. 2019;358:907–12. https://doi.org/10.1016/j.surfcoat.2018.11.065
  • [70] Nayak B, Sahu RK, Karthikeyan P. Study of tensile and compressive behaviour of the in-house synthesized al-alloy nano composite. IOP Conf Ser Mater Sci Eng. 2018;402:012070. https://doi.org/10.1088/1757-899X/402/1/012070
  • [71] Raj RR, Yoganandh J, Saravanan MS, Kumar SS. Effect of graphene addition on the mechanical characteristics of AA7075 aluminium nanocomposites. Carbon Lett. 2021;31:125–36. https://doi.org/10.1007/s42823-020-00157-7
  • [72] Li JL, Xiong YC, Wang XD, Yan SJ, Yang C, He WW, et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater Sci Eng. 2015;626:400–405. https://doi.org/10.1016/j.msea.2014.12.102
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6464bb61-35d8-4049-a9ee-4d1cb1cf7f8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.