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 A B S T R A C T  

The present paper presents comparative results of the forecasting of a cutting 

tool wear with the application of different methods of diagnostic deduction 

based on the measurement of cutting force components. The research was 

carried out during the milling of the Duralcan F3S.10S aluminum-ceramic 

composite. Prediction of the tool wear was based on one variable, two 

variables regression, Multilayer Perceptron (MLP) and Radial Basis Function 

(RBF) neural networks. Forecasting the condition of the cutting tool on the 

basis of cutting forces has yielded very satisfactory results. 
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1. INTODUCTION  

At the turn of recent years we can see more and more 
new materials on the market, which cutting properties are 
not fully known. The development of the automotive 
industry, aviation, etc. makes new and more durable 
materials needed, and the components made as accurate as 
possible in the shortest possible time. Metal-ceramic 
composites have found their use in recent applications 
because of better properties than light metals without 
additives or pure ceramics. They exhibit increased tensile 
and flexural strength, greater thermal expansion, greater 
tolerance to damage, and better tribological properties [5]. 
Metal-ceramic composites are multiphase materials 
consisting of metal and ceramics and may have other phases, 
but the volumetric fraction of the metallic phase must be 
more than a half of the composition of the material. These 
materials are mainly manufactured to modify mechanical 
properties (increase in hardness and stiffness), wear 
resistance due to friction, creep reduction. These composites 
have been used inter alia for aircraft chassis components, 
brakes, engine and turbine parts [7]. Metal-ceramic 

composites are difficult to cut and require the supervision of 
the cutting process. 

The essence of monitoring the milling process is the 
ability to predict a tool wear, workpiece quality, enabling full 
automation of the cutting process by determining the 
condition of the used tool. Without cutting monitoring 
systems, it is not possible to eliminate the costs associated 
with too early tool replacement. Tool wear is a random 
occurrence because of a large number of factors affecting to 
them [4]. Using the diagnostic tools for cutting tool and 
process allows higher cutting parameters to be used, making 
it possible to exploit the potential capabilities of the 
machining system entirely [3]. Determining the right time to 
replace the tool, so the tool reaches the limit of wear is one of 
the most important tasks of diagnostic systems. The edge 
wear occurs at significantly less time than the wear of the 
other parts of the system, such as spindle or tool holder. 
Generally, it can be stated that diagnosis of the cutting 
process is to ensure the quality of the product while 
minimizing the wear costs of the machining system 
components. The components of cutting, vibration and 
acoustic emissions are usually used to the supervision. 
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Whereof the signals of the cutting force components, and in 
particular the resistance force, are most resistant to 
interference from the kinematic systems of the machine [2]. 

Diagnostic implication is understood as the processing of 
a diagnostic test result and other information about a subject 
and its environment, which is the final step in the diagnosis 
process and results in a diagnosis. During diagnostic 
inference a useful tool is neural networks. The neural 
networks are helpful in determining the relationships 
between data, while using them, it is possible to find a 
dependency model without prior assumptions about it. 
Multilayer unidirectional networks (MLPs), are most 
commonly used, this means that the network only provides 
forward information (from input to output), there is no 
feedback here, this network has been used in this paper. Such 
a network consists of one input layer, hidden n-layers 
(usually one or two) and one output layer. Information on 
this network is transmitted on a peer-to-peer basis (P2P) 
[3,9]. Another type of network, also used in this paper, is a 
network with radial basis functions (RBF). In these networks, 
the output values of neurons depend on the distance of the 
test point from the center, and the center is expressed by the 
learning parameters of the radial neuron. Important 
indicators of correctness during the working network 
analysis are the quality of learning, validation and testing 
indicators. These values are correlation coefficients, which 
are the mean of all data in the validation and test learning 
sets. The error value that is usually calculated as a mean 
squared error is also important [1,10]. 
 
2. OBJECTIVE, SCOPE AND EXPERIMENTAL 

PROCEDURES 

2.1. Scope of research 
 

The purpose of the work is to demonstrate the suitability 
of cutting forces in diagnosing the condition of the edge 
during milling of hard-wear materials such as aluminum-
ceramic composites and compare to the most common 
diagnostic methods. 

As a workpiece, an aluminum-ceramic (Al-SiC) – 
Duralcan. Alloy F3S.10S. was used. The chemical composition 
of the composite is shown in Table 1 [11]. 
 
Table 1.Chemical composition of aluminum-ceramic composite 

F3S.10S 
Si % Fe % Cu % Mg % 

8,50-9,50 to 0,20 to 0,20 0,45-0,65 

Ti % SiC % others % Al 

to 0,20 to 10 to 0,03 
together 

0,01 

 rest               

 
This alloy is gravity casting and designed for rotors of 

railway brakes, brake calipers, cylinder liners and laser 
sensor housings. It is characterized by high thermal stability 
and low abrasive wear and low thermal stress [11]. Figure 1 
shows the metallographic sample of the ingot used in the 
test. 
 

 
Fig. 1. Metallographic sample of F3S.10S 

 
The machining was done on a universal milling machine with 
the following parameters: 
- fz = 0.02 mm / rev 
- ft = 84 mm / tooth 
- n = 1400 rpm 
- ap = 5 mm 
- ae = 0.5 mm 
- L = 278 mm 
Six monolithic, 3-fluted, milling cutters made by Kennametal 
with a diameter of Ø 10 mm, made of cemented carbide 
K600, were used during the machining. This cutter is 
designed for milling aluminum alloys. 
 

2.2. Method of measurement 

 
With a triaxial piezoelectric force gauge, the force values 

were measured during the milling of the Duralcan ingot. The 
principle of operation of the gauge is based on three 
piezoelectric sandwich transducers, which are preloaded to 
allow transfer forces tangential to the surface of the plates.  
The Fc component force is measured by the pair of plates cut 
perpendicular to the electric axis x of the crystal. The feed 
and thrust components are measured with two pairs of 
plates cut perpendicular to the mechanical axis y of the 
crystal. The electric axes of both plates relative to each other 
are rotated 90° [12]. 

During the research, six Kennametal monolithic, 3-point 
milling cutters, Ø 10mm in diameter, made of sintered 
carbides with the designation K600 were used. During each 
pass, the cutting forces were measured, and after each pass 
the VBB consumption value was measured. The data from the 
five cutters was used as input data, with the consumption 
value being the average of the wear on each cutter surface. 
The data collected during the last milling (tool 5) were used 
for tests of designated functions and neural networks. The 
test results were shown in Table 2. 

Figure 2 shows a diagram of the measuring path for 
measuring the forces during milling. A three-piece 
piezoelectric vibration sensor collects information about the 
force component values. Then the signal is transmitted to the 
amplifiers and the upper and lower pass filters, after which 
the amplified signal is converted to a digital signal and sent 
to the computer with the corresponding program for 
recording and analysis. 

 

SiC 
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Table 2. Peak and mean values of force components in time and 
wear values after each pass 

tool T 
[min] 

VBB 

[mm] 
Fpmax 
[N] 

Ffmax 

[N] 
FfNmax  

[N] 
Fprms 

[N] 
Ffrms 

[N] 
FfNrms 

[N] 

1 3,31 0 241 257 211 100 92 75 

  6,62 0 187 224 180 77 78 55 

  9,93 0 207 209 223 86 79 75 

  13,24 0 215 221 153 97 85 51 

  16,55 0,07 208 198 174 85 75 62 

  19,86 0,07 181 197 171 71 70 59 

  23,17 0,08 248 228 310 91 90 120 

  26,48 0,14 283 334 454 110 131 186 

  29,79 0,2 320 382 552 109 122 237 

  33,1 0,3 310 365 618 125 143 255 

  36,41 0,31 310 386 699 130 161 285 

2 3,31 0,19 241 257 435 118 121 202 

  6,62 0,22 273 303 547 120 137 252 

  9,93 0,25 320 301 690 137 148 305 

  13,24 0,29 316 444 738 135 172 308 

  16,55 0,33 348 485 796 148 175 348 

3 3,31 0,13 230 274 426 102 118 186 

  6,62 0,21 311 350 501 124 151 219 

  9,93 0,25 298 332 648 128 152 268 

  13,24 0,3 331 472 606 126 176 269 

  16,55 0,35 366 469 694 132 145 301 

4 3,31 0,18 313 405 455 109 132 200 

  6,62 0,21 316 399 577 131 163 256 

  9,93 0,25 357 363 659 151 161 301 

  13,24 0,28 454 366 696 129 155 303 

  16,55 0,33 239 428 772 78 162 369 

  19,86 0,38 220 524 796 73 170 370 

5 3,31 0,18 159 325 451 45 93 212 

  6,62 0,22 221 359 604 68 119 283 

  9,93 0,26 194 463 657 58 139 316 

  13,24 0,3 201 470 753 65 156 348 

  16,55 0,36 193 512 870 62 164 371 

  19,86 0,41 211 461 880 68 157 401 

6 3,31 0,21 181 334 488 73 97 237 

  6,62 0,24 216 406 682 68 129 324 

  9,93 0,28 230 380 665 64 129 330 

  13,24 0,32 217 389 787 69 133 380 

  16,55 0,39 194 447 807 65 137 382 

  19,86 0,45 199 501 730 69 158 389 

 

 
Fig. 2. Diagram of measurement circuit 

 
Figure 3 shows how to mount the dynamometer and the 

axis and force components. 
 

 
Fig. 3. Mounting position of the dynamometer and axle markings 

 
After each pass, the wear of each tool wear (VBB) was 

measured using a PZO MWM 2373 workshop microscope. 
The analysis yields two values for each force component, the 
mean square and the maximum. Both values were calculated 
from the final run of each pass to match the final wear values. 
The mean square value is calculated according to formula 1. 

                      (1) 
The peak is the maximum amplitude value for a certain 

period of time. 
 
3.  TEST RESULTS AND ANALYSIS  

Total edge wear usually took five passes i.e. a cutting time 
of approx. t=17 min. With a limitation value VBB=0.3 mm. A 
measure scheme of the VBB wear on milling tool are shown 
in Figure 4. Figure 5. shows a  comparison between a new 
tool and a damaged tool. 
 

 
Fig. 4. Wear flank face (VBB) 

 

z, direction Fp 

x, direction FfN 

z, direction Ff 

A 

A 
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Fig. 5. a) New tool, b) wear flank face on milling tool 

3.1. Analysis of force waveform signals in the time domain 
 

Based on the data recorded in Analizator program,  the 
waveform components of the cutting forces signals in the 
time domain were obtained. Sample waveforms are shown in 
Figure 5.  
 

 
Fig. 5. The waveform of the Fp component in the time domain 

 
Based on the obtained graphs, the peak and the mean 

square component forces of the time domain were 
calculated. 
 
3.2.  Spectral analysis of component cutting forces 
 

Using the Analizator program, the waveform components 
of the cutting forces signals in the frequency domain were 
obtained. Conversion from time-domain to frequency-based 
signal is based on Fast Fourier Transform (FFT). As it is seen 
in Figure 6, the dominant spectrum component is for 
frequency f=69Hz. As shown by the formula 2, this is the 
frequency resulting from the insertion of the cutting edge 
into the material. 
 

𝑓𝑖𝑛𝑝𝑢𝑡 =
𝑛∙𝑧

60
=

1400∙3

60
= 69[𝐻𝑧]                   (2) 

 
4. DIAGNOSTIC INFERENCE BASED ON REGRESSION OF 

ONE VARIABLE 
 

From the set of values of the machining forces of the time 
and frequency domain, the linear correlation of the data is 
equal to or higher than R20,7, because according to the 
literature data [6,13], such a coefficient provides a strong 
linear correlation of the data. Based on trendline formulas 
predicted tool wear values  were received and square root of 
mean square error values were computed after comparison 
with the data of reference milling (cutter 5). Figures 7, 8 
show exemplary graphs based on time progres. As a result of 
the increasing flank face wear, the cutting force increases [8], 
this is related to the increase of cutting resistance. So an 
increase in the value of the cutting force components signal 
allows to conclude about the increase in wear. This 

dependence is presented in graphs 7,8 and regression 
function models in Table 2.The lowest error value was 

obtained for the maximum values and the mean square of 
normal force, which is consistent with the literature data. In 
the frequency domain, from the diagnostic point of view, only 
the normal component for the first tool frequency of input in 
the material (finput) is useful. In no case has the correlation 
between the component of Fp and the wear of the VBB edge 
been observed. Table 3. presents predicted wear, mean 
square errors calculated on the basis of equations from  
Table 2.  
 

 
 

  

 
Fig. 6. Waveform spectrum of force components; a) component 

according to direction of cutting speed Fp; b) component of feed Ff, 
c) normal component FfN 

 

Fig. 7. Dependency of tool wear VBB from peak value of feed force 
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r and linear regression functions

 
Fig. 8. Dependency of tool wear VBB from peak value of normal 

force 
 
Table 2. Linear regression functions of one variable 
nr variable wear equation 
1. FfNmax VBB=0,0012·FfNmax-0,790 
2. FfNmax VBB=0,0005·FfNmax-0,079 
3. FfRMS VBB=0,0032·FfRMS-0,198 
4. FfNRMS VBB=0,0011·FfNRMS-0,046 
5. FfNinput VBB=0,0005·FfNinput-0,0791 
 
Table 3. Expected tool wear values and the mean square root 

error and linear regression functions 
real theoretical 
VBB 
for 

cutter 
5 

[mm] 

VBB 
for 

Ffmax 
[mm]  

VBB 
for 

FfNmax 
[mm]  

 

VBB for 
FfRMS [mm]  

 

VBB for 
FfNRMS 
[mm]  

 

VBB for 
FfNinput 
[mm]  

 

0,18 0,2027 0,1465 0,1005 0,1879 0,1888 
0,22 0,2442 0,2233 0,1846 0,2661 0,2622 
0,26 0,3687 0,2496 0,2464 0,3028 0,2836 
0,3 0,3773 0,2975 0,3024 0,3379 0,3414 

0,36 0,4278 0,356 0,3290 0,3628 0,3385 

0,41 0,3660 0,3611 0,3066 0,3961 0,3576 

error 0,0651 0,0247 0,0569 0,0307 0,0350 
 

5. DIAGNOSTIC IMPLICATIONS BASED ON REGRESSION 

OF TWO VARIABLES 

Using Statistica, three-dimensional graphs of tool wear 
VBB vs two components of force were created. Fig. 9. 
illustrates an exemplary graph depicting the dependence of 
wear of the component forces. The dependencies in which 
the square root of mean square error was the smallest, i.e. 
the predicted values of wear on the basis of the quadratic 
formula describing the surfaces of the graph, are closest to 
the values obtained in the reference pass (cutter 5). 

Table 4. presents the mathematical functions of the 
various planes describing the relationship between the force 
components and the wear of the edge VBB. Table 5. shows the 
predicted results of wear, the values of square root of mean 
square errors. 
 

 
Fig.9. Dependency of wear VBB from Ffmax and FfNRMS 

 
 
Table 4. Functions showing the dependence between cutting force 

components and wear VBB 

VBB for Ffmax ,FfNRMS 
[mm] 

VBB for FfNmax, 
FfRMS [mm] 

VBB for Ffmax, 
FfNmax [mm] 

VBB for 
FfNRMS,FfRMS 

[mm] 

VBB=0,14+0,0013·F
fNRMS-0,0013Ffmax-

2,71·10-6 

·FfNRMS2+2,81·10-6 

·FfNRSM·Ffmax+1,08·1
0-6 

·Ffmax2 

VBB=0,075-
0,0032·FfRMS-
0,0007·FfNmax

+1,4 
·10-5·FfRMS2-

9,51·10-

7·FfRMS 

·FfNmax-3,03 
·10-8 FfNmax2 

VBB=0,16+0,0
009· FfNmax-
0,002·Ffmax-
4,06·10-7· 

FfNmax 2 

+9,99·10-8· 
FfNmax 

·Ffmax+2,91 
·10-6·Ffmax2 

VBB=0,086-
0,0022·FfRMS-
0,001·FfNRMS+

5,34 
·10-6·FfRMS2-

4,46·10-

6·FfRMS 

·FfNRMS-1,01 
·10-6 FfNRMS2 

 
Table 5. Estimated consumption values based on regression of 

two variables 
real theoretical 

VBB dla 
frezu 5 
[mm] 

VBB for Ffmax 

,FpRMS [mm] 

VBB for 
Fpmax, FfRMS 

[mm] 

VBB for Ffmax, 
Fpmax [mm] 

VBB for 
FpRMS,FfRMS 

[mm] 
0,18 0,183534 0,168446 0,153544 0,182982 
0,22 0,253482 0,236789 0,23273 0,253609 
0,26 0,326401 0,261914 0,303095 0,296093 
0,3 0,356745 0,31637 0,344601 0,342788 

0,36 0,406069 0,379136 0,418282 0,374645 

0,41 0,379741 0,380632 0,373031 0,394357 

error 0,0443 0,0179 0,0397 0,0281 

 

6. DIAGNOSTIC INFERENCE BASED ON NEURAL 

NETWORKS 

Two MLP and RBF network models were used in the 
work, networks were created that worked on different data 
sets. Table 6. shows the network formulas and variables for 
which the network was created. Where: MLP (RBF) 3-3-1 is 
an MLP (RBF) network type with three neurons in the input 
layer, three in the hidden layer and one in the output layer. 
BFGS 42 - backward error propagation with 42 iterations 
RBFT - RBF network teaching 

Table 7 presents predicted tool wear and square roots of 
mean square errors. 
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Table 6. Selected neural networks and their properties 
 name quality of 

learning 
quality 
testing 

qualityof 
validation 

1. 
RBF 6-3-
1 

0,940292 0,995692 0,797116 

2. 
RBF 6-6-
1 

0,956241 0,983143 0,806295 

3. 
MLP 6-8-
1 

0,968468 0,975457 0,891897 

4. 
MLP 6-
10-1 

0,971616 0,978304 0,872292 

5. 
RBF 3-
11-1 

0,970593 0,917281 0,722665 

6. 
RBF 3-3-
1 

0,951669 0,970349 0,806752 

7. 
MLP 3-3-
1 

0,962926 0,962363 0,905039 

8. 
MLP 3-4-
1 

0,977273 0,964475 0,992969 

9. 
RBF 3-
17-1 

0,947367 0,986973 0,915829 

10. 
RBF 3-
14-1 

0,976525 0,999955 0,934198 

11. 
MLP 3-6-
1 

0,979250 0,972938 0,897118 

12. 
MLP 3-4-
1 

0,973250 0,976308 0,893461 

 
testing 
error 

learning 
algorithm 

error 
function 

activation 
hidden 

1. 0,001368 RBFT SOS Gauss 
2. 0,000559 RBFT SOS Gauss 
3. 0,000352 BFGS 62 SOS Sinus 
4. 0,000412 BFGS 33 SOS Logistic 
5. 0,000831 RBFT SOS Gauss 
6. 0,000570 RBFT SOS Gauss 
7. 0,000375 BFGS 41 SOS Exponential 
8. 0,000725 BFGS 58 SOS Logistic 
9. 0,000645 RBFT SOS Gauss 

10. 0,000415 RBFT SOS Gauss 
11. 0,000328 BFGS 62 SOS Logistic 
12. 0,000401 BFGS 44 SOS Exponential 
 learning error Validation error 
1. 0,000787 0,001682 
2. 0,000582 0,001189 
3. 0,000425 0,001311 
4. 0,000435 0,001200 
5. 0,000394 0,002634 
6. 0,000641 0,001108 
7. 0,000495 0,001164 
8. 0,000306 0,001442 
9. 0,000715 0,001243 
10. 0,000317 0,000993 
11. 0,000279 0,001240 
12. 0,000359 0,001262 
 input activation data 
1. Linear all F 
2. Linear all F 
3. Logistic all F 
4. Logistic all F 
5. Linear only FRMS 
6. Linear only FRMS 
7. Logistic only FRMS 
8. Sin only FRMS 
9. Linear only FMAX 
10. Linear only FMAX 
11. Linear only FMAX 
12. Exponential only FMAX 

 

Table 7. Predicted tool wears obtained using neural networks 
VBB for 
cutter 

5 
[mm] 

RBF 6-
3-1 

RBF 6-6-
1 

MLP 6-
8-1 

MLP 6-
10-1 

0,18 0,169413 0,168609 0,119494 0,125082 

0,22 0,204339 0,220483 0,237293 0,224657 

0,26 0,291854 0,313287 0,291740 0,304288 

0,3 0,339470 0,349836 0,327814 0,335287 

0,36 0,393932 0,382849 0,352792 0,366209 

0,41 0,380747 0,375456 0,358187 0,360368 

error 0,0287 0,0346 0,0376 0,0381 

VBB 
for 

cutter 
5 

[mm] 

RBF 3-
11-1 

RBF 3-3-
1 

MLP 3-
3-1 

MLP 3-
4-1 

0,18 0,219829 0,169234 0,131312 0,236957 

0,22 0,250397 0,250033 0,233954 0,213042 

0,26 0,307211 0,313769 0,279988 0,262360 

0,3 0,341965 0,349240 0,335329 0,331406 

0,36 0,357312 0,367953 0,357934 0,365242 

0,41 0,362477 0,372790 0,369616 0,379507 

error 0,0382 0,0360 0,0312 0,0296 

VBB 
for 

cutter 
5 

[mm] 

RBF 3-
17-1 

RBF 3-
14-1 

MLP 3-
6-1 

MLP 3-
4-1 

0,18 0,205031 0,137877 0,165251 0,181655 

0,22 0,203643 0,207059 0,255001 0,252082 

0,26 0,298483 0,279469 0,304527 0,312147 

0,3 0,356456 0,380369 0,347715 0,344329 

0,36 0,412634 0,368161 0,404776 0,384225 

0,41 0,352781 0,349409 0,374337 0,366328 

error 0,0440 0,0457 0,0387 0,0370 

 
Based on the above tables, it is clear that RBF networks 

interference is better only when the mean square are used at 
the same time with peak values. In other cases, better results 
are obtained using the MLP network. 
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7. COMPARISON OF INFERENCE METHODS 
 

Table 8. summarizes the lowest error values for each of 
the inference methods. As it is  seen in the table below, the 
smallest error value was obtained on the basis of two 
variables. However, the advantage of neural networks is the 
use of more variables so that the results are not so sensitive 
to accidental changes in one of the signals. Conclusion on the 
basis of only one variable implies the risk of interference and 
may therefore not be able to fulfill its task in on-line 
monitoring. 
 
Table 8. Comparison of error values from all inference methods 
name network 

MLP 3-
4-1 

network 
RBF 
 6-3-1 

regressio
n of one 
variable 

regression of 
two variables 

date 
FpRMS, 
FcRMS, 

FfRMS 
all FpMAX Fpmax, FfRMS 

error 0,0296 0,0287 0,0247 0,0179 

 
As can be seen in the table above, all of the presented 

inference methods allow to predict precisely the wear of a 
cutting tool (RMSE<0.03mm). 
 
8. CONCLUSIONS AND SUMMARY  
 

1. The studied material had a heterogeneous 
structure, which is visible on metallographic 
samples. This results in different wear intensity of 
the milling cutters. However, this had no significant 
effect on the predicted edge wear values. 

2. Inference on the basis of the component force 
signals produces satisfactory results, and the 
predicted values are burdened with a small error. 
The normal component FfN is most sensitive to 
milling tool wear, which means that tool wear has 
the greatest impact on its value. However, there 
was no satisfactory correlation between the wear of 
the tool and the cutting force Fp. 

3. Using neural networks as a diagnostic inference 
method gives satisfactory results, but the results 
show that finding the best performing network 
architecture is not obvious. In order to resolve this, 
many different types of networks should be tested 
and this in turn is very time consuming. In addition, 
it is possible to use multiple variables of the cutting 
force, so that the interference of one signal does not 
have as significant consequences as in the case of 
the one-variable regression. 

4. As can be seen from the presented studies, the 
diagnostic inference using cutting force 
components is more effective in the time domain 
than in the frequency domain. There is a greater 
correlation of the measures determined here from 
time passes. 

5. The best results (smallest square root of mean 
square error RMSE=0.0179) were obtained for the 
regression of two variables FfNmax and FfRMS. 
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