RIEMANN INTEGRABILITY AND QUASI-UNIFORM CONVERGENCE

Roman Ger^a, Jacek Jędrzejewski^b

a Institute of Mathematics
Silesian University
ul. Bankowa 14, 40-007 Katowice, Poland
e-mail: romanger@us.edu.pl

^bInstitute of Mathematics and Computer Science Jan Długosz University in Częstochowa al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland e-mail: jacek.m.jedrzejewski@gmail.com

Abstract. We consider quasi-uniform convergence of sequences of functions in a context of Riemann integrability of its limit. Some generalizations are discussed as well.

Arzelá considered an additional regularity condition for a pointwise convergent sequence of functions. Its role is particularly interesting while dealing with convergence in the space of continuous functions. The precise definition reads as follows.

Definition 1. (Arzelá [1]. A pointwise convergent sequence $(f_n)_{n=1}^{\infty}$ of real functions defined in a topological space X is called quasi-uniformly convergent to a function $f: X \longrightarrow \mathbb{R}$ if

$$\bigvee_{\varepsilon>0}\bigvee_{n\in\mathbb{N}} \exists_{k_n} \exists_{p_1,\dots,p_{k_n}>n} \bigvee_{t\in X} \left(\min\left\{|f_{p_i}(t)-f(t)|: i\in\{1,\dots,k_n\}\right\} < \varepsilon\right). \tag{1}$$

The following two facts concerning this convergence are well known.

Fact 1. (Szökefalvi-Nagy [2]). Assume that a sequence of continuous real functions defined in a topological space X is quasi-uniformly convergent to a function $f: X \longrightarrow \mathbb{R}$. Then f itself is continuous.

Fact 2. Let X be a compact topological space and let $(f_n)_{n=1}^{\infty}$ be a pointwise convergent sequence of continuous real functions defined in X. If the limit function $f: X \longrightarrow \mathbb{R}$ is continuous as well, then the sequence $(f_n)_{n=1}^{\infty}$ is quasi-uniformly convergent to f.

In what follows, we shall consider a locally compact topological group (G, +) with Haar measure h. It turns out that, in such circumstances, Fact 1 carries over to functions that are merely h-almost everywhere continuous. Namely, the following theorem holds true.

Theorem 1. Let A stand for a Haar measurable subset of G with h(A) > 0. Assume that a sequence $(f_n)_{n=1}^{\infty}$ of h-almost everywhere continuous real functions defined in A is quasi-uniformly convergent to a function $f: A \longrightarrow \mathbb{R}$. Then f itself is h-almost everywhere continuous.

Proof. Let E_n denote the set of all continuity points of the function f_n , $n \in \mathbb{N}$. Moreover, let

$$E = \bigcap_{n=1}^{\infty} E_n.$$

Since $h(E_n) = h(A)$ for all $n \in \mathbb{N}$, we also have h(E) = h(A).

Fix arbitrarily x_0 from E. For any positive ε there exists a positive integer n_0 such that

$$|f_n(x_0) - f(x_0)| < \frac{\varepsilon}{3}$$
 provided that $n \ge n_0$.

In view of condition (1), we infer that there exist n_1, \ldots, n_k such that

$$n_1 \ge n_0, \dots, n_k > n_0$$
 and $|f_{n_1}(t) - f(t)| < \frac{\varepsilon}{3} \lor \dots \lor |f_{n_k}(t) - f(t)| < \frac{\varepsilon}{3}$

for all $t \in A$.

Each of the functions f_{n_i} is continuous at x_0 ; therefore there exists a neighborhood U_0 of x_0 such that

$$|f_{n_i}(t) - f_{n_i}(x_0)| < \frac{\varepsilon}{3}$$

for all $t \in U_0 \cap A$ and $i \in \{1, \dots, k\}$.

Let $x \in U_0 \cap A$, and let n_{i_o} be such that

$$\left| f_{n_{i_0}}(x) - f(x) \right| < \frac{\varepsilon}{3}.$$

Then

$$|f(x) - f(x_0)| \le$$

$$\leq \left| f(x) - f_{n_{i_0}}(x) \right| + \left| f_{n_{i_0}}(x) - f_{n_{i_0}}(x_0) \right| + \left| f_{n_{i_0}}(x_0) - f(x_0) \right| < \varepsilon,$$

which proves that f is continuous at every point x_0 from the set E, i.e. h-almost everywhere in A. Thus the proof has been completed.

Recall that a function $f:[a,b] \longrightarrow \mathbb{R}$ is Riemann integrable if and only if it is almost everywhere continuous with respect to the one-dimensional Lebesgue measure. Therefore, applying Theorem 1 for the group $(\mathbb{R},+)$ and A being a compact interval in \mathbb{R} , we obtain immediately the following result.

Theorem 2. Let $(f_n)_{n=1}^{\infty}$ be a sequence of Riemann integrable functions defined in [a,b]. If $f:[a,b] \longrightarrow \mathbb{R}$ is a quasi-uniform limit of the sequence $(f_n)_{n=1}^{\infty}$, then f is Riemann integrable as well.

Plainly, in general, the Riemann integrability of f does not imply that its Riemann integral is the limit of the sequence of integrals of functions f_n , $n \in \mathbb{N}$. Nevertheless, we have the following dominated convergence result.

Theorem 3. Let $f_n : [a,b] \longrightarrow \mathbb{R}$ be Riemann integrable functions. If $\lim_{n \longrightarrow \infty} f_n = f$ quasi-uniformly and there exists a Riemann integrable function $g : [a,b] \longrightarrow \mathbb{R}$ such that for every positive integer n one has

$$|f_n| \leq g$$

then f is Riemann integrable and

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to \infty} f_n(x) \, dx.$$

For the proof it suffices to apply Theorem 2 jointly with the classical Lebesgue theorem on majorized convergence.

A careful inspection of the proof of Theorem 1 shows that the group structure as well as the translation invariance of the measure in question are inessential. As a matter of fact, the following abstract setting will allow us to reproduce this proof with no essential changes. Namely, given a topological space X and a proper σ -ideal $\mathscr I$ of subsets of X, we say that a function f is $\mathscr I$ -almost everywhere continuous in X whenever the set of all discontinuity points of the function f yields a member of $\mathscr I$. So, we terminate this paper with the following

Theorem 4. Assume that a sequence $(f_n)_{n=1}^{\infty}$ of \mathscr{I} -almost everywhere continuous real functions defined on X is quasi-uniformly convergent to a function $f: X \longrightarrow \mathbb{R}$. Then f itself is \mathscr{I} -almost everywhere continuous.

Now, Theorem 1 becomes a special case of the latter result on setting X := A and $\mathscr{I} := \{F \subset X : h(F) = 0\}$ which, obviously, forms a proper σ -ideal \mathscr{I} of subsets of X.

References

- [1] C. Arzelá. Sulle serie di functioni. Mem. R. Accad. Sci. Inst. Bologna, ser. 5, (8), 130-186, 701-744, 1899-1900.
- [2] B. Szökefalvi-Nagy. Theory of Real Functions and Orthogonal Expansions. Akademiai Kiado, Budapest, 1964.