PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research methods in the study of heat transfer coefficient during flow in minichannels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the specification of research methods commonly encountered in the studies of heat transfer processes in minichannels. In particular the following methods have been emphasized: electrochemical limiting current method as well as the thermal balance method. In thermal balance method the mean heat transfer coefficient is determined by the set of experimental thermal measurements of the investigated heat exchanger. In turn, limiting current method is based on heat and mass transfer analogy. The discussed research methods have been implemented on two specially designed and constructed test facilities with compact minichannel heat exchangers, which have been presented and described in details. In order to validate the designed setup, the preliminary experimental measurements of two minichannel heat exchangers with hydraulic diameter of 2 mm and rectangular cross sections during single-phase liquid flows have been carried out. In further perspective it is planned to extend the experimental studies of minichannel heat exchangers and to compare the results obtained by both methods described.
Rocznik
Strony
59--67
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • The Faculty of Mechanical Engineering and Aeronautics, Department of Thermodynamics, Rzeszów University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • The Faculty of Mechanical Engineering and Aeronautics, Department of Thermodynamics, Rzeszów University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Owhaib W., Palm B. (2004). Experimental investigation of single-phase convective heat transfer in circular microchannels. Experimental Thermal and Fluid Science Vol. 28, pp. 105-110
  • 2. Adams T.M., Abdel-Khalik S.I., Jeter S.M., Quresi Z.H. (1998). An experimental investigation of single-phase forced convection in microchannels. International Journal of Heat and Mass Transfer, Vol 41, pp. 851-857
  • 3. Lelea D., Nishio S., Takano K. (2004). The experimental research on microtube heat transfer and fluid flow of distilled water. International Journal of Heat and Mass Transfer, Vol. 47, pp. 2817-2830
  • 4. Yang C.-Y, Lin T.-Y. (2007). Heat transfer characteristics of water flow in microtubes. Experimental Thermal and Fluid Science, Vol. 32, pp. 432-439
  • 5. Celata G.P., Cumo M., Marconi V., McPhail S.J., Zummo G. (2006). Microtube liquid single-phase heat transfer in laminar flow. International Journal of Heat and Mass Transfer, Vol. 49, pp. 3538-3546
  • 6. Morini G.L. (2019). The challenge to measure single-phase convective heat transfer coefficients in microchannels. Heat Transfer Engineering, Vol. 40, No. 9-10, pp. 695-710
  • 7. Wilk J. (2012). Convective mass/heat transfer in the entrance region of the short circular minichannel. Experimental Thermal and Fluid Science, Vol. 38, pp. 107-114
  • 8. Wilk J. (2014). A review of measurements of the mass transfer in minichannels using the limiting current technique, Experimental Thermal and Fluid Science, Vol. 57, pp. 242-249
  • 9. Wilk J. (2020). Heat/mass transfer analogy in the case of convective fluid flow through minichannels, International Journal of Thermal Sciences, Vol. 156, 106467
  • 10. E. van Rooyen, M. Christians, J.R. Thome (2012). Modified Wilson Plots for Enchanced Heat Transfer Experiments: Current Status and Future Perspectives. Heat Transfer Engineering, 33:4-5, pp. 342-355
  • 11. Fernàndez-Saera J., Uhía F.J., Sieres J., Campo A. (2007). A general review of the Wilson plot method and its modifications to determine convection coefficients in heat exchange devices. Applied Thermal Engineering, Vol. 27, pp. 2745-2757
  • 12. Wilson E.E. (1915). A basis for rational design of heat transfer apparatus. Trans ASME J Heat Transfer, Vol. 37, pp. 546-551
  • 13. Rose J.W. (2004). Heat transfer coefficients, Wilson plots and accuracy of thermal measurements. Experimental Thermal and Fluid Science, Vol. 28, pp. 77-86
  • 14. Rybiński W., Mikielewicz J. (2018). Statistical method for the determination of the minichannel hest exchanger’s thermal characteristics. Energy, Vol. 158, pp. 139-147
  • 15. Moreira T.A., Colmanetti A.R.A., Tibiriçà C.B. (2019). Heat transfer coefficient: a review of measurement techniques. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 41, pp. 264-289
  • 16. Eckert E.R.G., Sakamoto H., Simon T.W. (2001). The heat/mass transfer analogy factor, Nu/Sh, for boundary layers on turbine blade profiles. International Journal of Heat and Mass Transfer, Vol. 44, , pp. 1223-1233.
  • 17. Bard A.J., Faulkner L.R. (2005) Electrochemical methods. John Wiley & Sons.
  • 18. Wilk J., Grosicki S. (2018). Experimental study of electrochemical mass transfer in an annular duct with the electrolyte nanofluid. International Journal of Thermal Sciences, Vol. 129, pp.280-289.
  • 19. Tychanicz-Kwiecień M., Gil P., Smusz R. (2019). The design of experimental set-up for testing of heat exchangers. Contemporary Issues of Heat and Mass Transfer, XV Symposium on Heat and Mass Transfer 2019 (SOHAMT 2019) 16-19.09.2019, Kołobrzeg, Poland pp.1-18,
  • 20. Kell G.S. (1975). Density, Thermal Expansivity and Compressibility of Liquid Water from 0°C to 150°C: Correlations and Tables for Atmospheric Pressure and Saturation Reviewed and Expressed on 1968 Temperature Scale, Journal of Chemical and Engineering Data, Vol. 20, No. 1.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6461fb45-f1b7-4287-a11b-8bfdc4914ffe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.