PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Anchor Depth and Friction Coefficient Between Anchor and Rock on the Trajectory of Rock Masses Detachment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the results of a FEA (Finite Element Analysis) concerning the propagation of the fracture tra- jectory during the detachment of rock masses. The analysis considers mechanical anchoring parameters, including the depth of anchoring and the friction between the anchor head and the brittle material. The analysis involved varying the effective anchorage depth hef = 50, 100, and 150 mm, along with considering different coefficients of friction (μ) for the anchor head against the rock, including 0.15, 0.3, and 0.45. The results indicated that within the chosen range of anchorage depths, the extent of damage increases with the depth of anchor embedment. However, the depth of anchoring, considering the studied range of this parameter and the assumed mechanical properties of the rock, did not have a significant effect on the value of the angle cone (α0) during the initial phase of the medium’s destruction. For the friction coefficient μ = 0.15, there is a clear deep penetration into the fracture at its initial stage of development (at the initial angle of α0 = -20°), promoting further spread of the fracture on the free surface. For larger values of the friction coefficient (μ = 0.3 and 0.45) – the trend is less pronounced (α0 = -2°÷-8°) resulting in a decrease in the crack range.
Słowa kluczowe
Twórcy
autor
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Bokor B, Sharma A, Hofmann J. Experimental investigations on concrete cone failure of rectangular and non-rectangular anchor groups. Engineering Structures. 2019 Jun;188:202–17.
  • 2. Bokor B, Tóth M, Sharma A. Fasteners in steel fiber reinforced concrete subjected to increased loading rates. Fibers. 2018 Dec 6;6(4):93.
  • 3. A. Al- Ta S, A. Mohammed A. Tensile strength of short headed anchors embedded in steel fibrous concrete. AREJ, 2010 Oct 28;18(5):35–49.
  • 4. Ashour AF, Alqedra MA. Concrete breakout strength of single anchors in tension using neural networks. Advances in Engineering Software. 2005 Feb;36(2):87–97.
  • 5. Pallarés L, Hajjar JF. Headed steel stud anchors in composite structures, Part I: Shear. Journal of Constructional Steel Research. 2010 Feb;66(2):198–212.
  • 6. Pallarés L, Hajjar JF. Headed steel stud anchors in composite structures, Part II: Tension and interaction. Journal of Constructional Steel Research. 2010 Feb;66(2):213–28.
  • 7. Brincker R, Ulfkjær JP, Adamsen P, Langvad L, Toft R. Analytical model for hook anchor pull-out. In: Proceedings of the International Symposium on Anchors in Theory and Practice: Salzburg, Austria, 9-10 october 1995. CRC Press/Balkema; 1995. p. 3–15.
  • 8. Wysmulski P. Non-linear analysis of the postbuckling behaviour of eccentrically compressed composite channel-section columns. Composite Structures. 2023 Feb;305:116446.
  • 9. Falkowicz K. Experimental and numerical failure analysis of thin-walled composite plates using progressive failure analysis. Composite Structures. 2023 Feb;305:116474.
  • 10. Różyło P, Wysmulski P, Falkowicz K. Fem and experimental analysis of thin-walled composite elements under compression. International Journal of Applied Mechanics and Engineering. 2017;22(2).
  • 11. Rogala M, Gajewski J. Crashworthiness analysis of thin-walled square columns with a hole trigger. Materials. 2023 Jun 5;16(11):4196.
  • 12. Rogala M, Gajewski J, Gawdzińska K. Crashworthiness analysis of thin-walled aluminum columns filled with aluminum–silicon carbide composite foam. Composite Structures. 2022 Nov;299:116102.
  • 13. Rogala M, Gajewski J, Górecki M. Study on the Effect of geometrical parameters of a hexagonal trigger on energy absorber performance using ANN. Materials. 2021 Oct 11;14(20):5981.
  • 14. Wysmulski P. Numerical and experimental study of crack propagation in the tensile composite plate with the open hole. Adv Sci Technol Res J, 2023;17(4). http://www.astrj.com/Numerical-and- Experimental-Study-of-Crack-Propagation-in-the- Tensile-Composite-Plate,169970,0,2.html
  • 15. Falkowicz K, Dębski H, Wysmulski P, Różyło P. The behaviour of compressed plate with a central cut-out, made of composite in an asymmetrical arrangement of layers. Composite Structures. 2019 Apr;214:406–13.
  • 16. Rogala M, Tuchowski W, Czarnecka-Komorowska D, Gawdzińska K. Analysis and assessment of aluminum and aluminum-ceramic foams structure. Adv Sci Technol Res J, 2022;16(4). http://www.astrj.com/ Analysis-and-assessment-of-aluminum-and-aluminum-ceramic-foams-structure,153028,0,2.html
  • 17. Falkowicz K. Experimental and numerical analysis of compression thin-walled composite plates weakened by cut-outs. Archives of Civil Engineering. 2017 Dec 1;63(4):161–72.
  • 18. Różyło P, Falkowicz K, Wysmulski P, Dębski H, Pasnik J, Kral J. Experimental-numerical failure analysis of thin-walled composite columns using advanced damage models. Materials. 2021 Mar 19;14(6):1506.
  • 19. Falkowicz K. Numerical onvestigations of perforated CFRP Z-cross-section profiles, under axial compression. Materials. 2022 Oct 3;15(19):6874.
  • 20. Wysmulski P. The effect of load eccentricity on the compressed CFRP Z-shaped columns in the weak post-critical state. Composite Structures. 2022 Dec;301:116184.
  • 21. Romero A, Galvín P, Domínguez J. 3D non-linear time domain FEM–BEM approach to soil–structure interaction problems. Engineering Analysis with Boundary Elements. 2013 Mar;37(3):501–12.
  • 22. Romero A, Galvín P, Tadeu A. An accurate treatment of non-homogeneous boundary conditions for development of the BEM. Engineering Analysis with Boundary Elements. 2020 Jul;116:93–101.
  • 23. Jendzelovsky N, Tvrda K. Probabilistic Analysis of a hospital building slab foundation. Applied Sciences. 2020 Nov 6;10(21):7887.
  • 24. Jendzelovsky N, Tvrda K. Analysis of a bending- stressed pile in interaction with subsoil. Buildings. 2023 Jun 9;13(6):1497.
  • 25. Foraboschi P. Ultimate shear force of an any anchor group post-installed into concrete. Materials. 2023 Mar 24;16(7):2608.
  • 26. Siegmund M, Jonak J. Analysis of the process of loosening the rocks with different strength properties using the undercutting bolts. IOP Conf Ser: Mater Sci Eng. 2019 Dec 1;679(1):012014.
  • 27. Jonak J, Siegmund M, Karpiński R, Wójcik A. Three-dimensional finite element analysis of the undercut anchor group effect in rock cone failure. Materials. 2020 Mar 15;13(6):1332.
  • 28. Cebula D, Kalita M, Prostański D. Underground tests of rescue tunnel driving technology by the method of rock destruction. Mining Machines, 2015, 33(1). http://yadda.icm. edu.pl/baztech/element/bwmeta1.element. baztech-fdd70e92-71df-4f2b-8f47-3541fe40207f
  • 29. Eligehausen R, Mallée R, Silva JF. Anchorage in concrete construction. Berlin: Ernst; 2006. 378 p.
  • 30. HILTI. Technisches Handbuch der Befestigungstechnik für Hoch- und Ingenieurbau. Ausgabe; HILTI: Schaan, Liechtenstein,. 2016.
  • 31. Committee 355 ACI. Evaluating the performance of post-installed mechanical anchors in concrete (ACI 355.2-01) and commentary (ACI 355.2 R-01): An ACI Standard. American Concrete Institute; 2002.
  • 32. Gontarz J, Podgórski J, Jonak J, Kalita M, Siegmund M. Comparison between numerical analysis and actual results for a pull-out test. Available from: http://et.ippt.pan.pl/index.php/et/article/view/1005
  • 33. Fuchs W, Eligehausen R, Breen J. Concrete capacity design (CCD) approach for fastening to concrete. Aci Structural Journal. 1995;92:73–94.
  • 34. SS-EN 1992-4 Eurocode 2-Design of Concrete Structures-Part 4: Design of Fastenings for Use in Concrete; SIS: Stockholm, Sweden; 2018.
  • 35. Jonak J, Karpiński R, Wójcik A, Siegmund M. The influence of the physical-mechanical parameters of rock on the extent of the initial failure zone under the action of an undercut anchor. Materials. 2021 Apr 8;14(8):1841.
  • 36. Jonak J, Karpiński R, Wójcik A. Influence of the undercut anchor head angle on the propagation of the failure zone of the rock medium. Materials. 2021 May 2;14(9):2371.
  • 37. Jonak J, Karpiński R, Wójcik A. Influence of the undercut anchor head angle on the propagation of the failure zone of the rock medium – Part II. Materials. 2021 Jul 12;14(14):3880.
  • 38. Jonak J, Karpiński R, Siegmund M, Machrowska A, Prostański D. Experimental verification of standard recommendations for estimating the load-carrying capacity of undercut anchors in rock material. Advances in Science and Technology Research Journal, 2021 Jan 11; http://www.astrj.com/Experimental- Verification-of-Standard-Recommendations-for- Estimating-the-Load-carrying,132279,0,2.html
  • 39. Jonak J, Karpiński R, Wójcik A, Siegmund M. The effect of undercut anchor diameter on the rock failure cone area in pullout tests. Adv Sci Technol Res J. 2022 Nov 1;16(5):261–70.
  • 40. Jonak J, Karpiński R, Wójcik A. Numerical analysis of the effect of embedment depth on the geometry of the cone failure. J Phys: Conf Ser. 2021 Dec 1;2130(1):012012.
  • 41. Jonak J, Karpiński R, Wójcik A, Siegmund M, Kalita M. Determining the effect of rock strength parameters on the breakout area utilizing the new design of the undercut/breakout anchor. Materials. 2022 Jan 23;15(3):851.
  • 42. Bennett MS. Prediction of the shear cone geometry surrounding headed anchor studs. 1979.
  • 43. Jonak J, Karpiński R, Wójcik A, Siegmund M. Numerical investigation of the formation of a failure cone during the pullout of an undercutting anchor. Materials. 2023 Feb 28;16(5):2010.
  • 44. Falkowicz K. Validation of extension-bending and extension-twisting coupled laminates in elastic element. Adv Sci Technol Res J. 2023 Jun 6;17(3):309–19.
  • 45. Falkowicz K. Numerical buckling analysis of thinwalled channel-section composite profiles weak ened by cut-outs. Adv Sci Technol Res J. 2022 Dec 1;16(6):88–96.
  • 46. Wysmulski P. Failure mechanism of tensile CFRP composite plates with variable hole diameter. Materials. 2023 Jun 29;16(13):4714.
  • 47. Bazant ZP, Kazemi MT, Hasegawa T, Mazars J. Size effect in Brazilian split-cylinder tests. Measurements and fracture analysis. ACI Materials Journal. 1991;88(3):325–32.
  • 48. Gontarz J. Modelowanie propagacji szczeliny w materiałach kruchych. Lublin: Politechnika Lubelska. Wydawnictwo; 2022. 189 p. (Monografie / Politechnika Lubelska)
  • 49. Jonak J, Karpiński R, Wójcik A. Numerical analysis of undercut anchor effect on rock. J Phys: Conf Ser. 2021 Dec 1;2130(1):012011.
  • 50. Jonak J, Karpiński R, Siegmund M, Wójcik A, Jonak K. Analysis of the rock failure cone size relative to the group effect from a triangular anchorage system. Materials. 2020 Oct 19;13(20):4657.
  • 51. Al Saeab L. Finite element modelling of Anchorage to concrete systems at different strain rates. Ottawa, Ontario: Carleton University; 2019. https://reposi- tory.library.carleton.ca/concern/etds/gh93h020x
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-645c4abf-9a12-4ed0-994e-644c588c7308
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.