PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modern heat-resistant 11%Cr martensitic steel for power industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the investigations was to characterise and describe the modern creep-resistant Thor 115 steel for supercritical power units. Design/methodology/approach: The investigations were performed based on the knowledge and experience of the author, the preliminary results of his own research and the available literature on the subject-matter of the considerations presented in the paper. Findings: Modern steel Thor 115 was subjected to overall analysis in terms of its use as a potential heat-resistant structural material for power plant components. Based on the preliminary results of own research and the available literature data, it has been shown that the analysed steel may be a structural material of full value if the assumed creep resistance in the service temperature range of 600-650ºC is confirmed. Research limitations/implications: The comprehensive analysis of degradation of microstructure of the steel after ageing (and/or creep) requires TEM examinations. Finding the correlation between the creep and ageing conditions and changes in the microstructure of the steel. Practical implications: The investigations carried out as part of the paper and the considerations on the subject-matter of the analysed steel may be the basis for the development of a database of material characteristics for steels, alloys and welded joints. Originality/value: The analysis of chemical composition, heat treatment and mechanical properties and the investigations of microstructure of Thor 115 steel are presented.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • Department of Materials Science, Czestochowa University of Technology, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1] F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ International 41/6 (2001) 612-625. DOI: https://doi.org/10.2355/isijinternational.41.612
  • [2] A. Zieliński, J. Dobrzański, Characteristics of changes in properties and structure of X10CrMoVNb9-1 steel due to long-term impact of temperature and stress Archives of Materials Science and Engineering 60/2 (2013) 72-81.
  • [3] M. Łomozik, Creep-resisting structural steel for the power industry – past and present, Institute of Welding Bulletin 57/5 (2013) 32-38.
  • [4] G. Junak, M. Cieśla, Low-cycle fatigue of P91 and P92 steels used in the power engineering industry, Archives of Materials Science and Engineering 48/1 (2011) 19-24.
  • [5] F. Abe, New martensite steels, in: A. Di Gianfrancesco (ed.), Materials for ultra-supercritical and advanced ultra-supercritical power plants, Woodhead Publishing, Cambridge, United Kingdom, 2017, 323-374. DOI: https://doi.org/10.1016/B978-0-08-100552-1.00010-5
  • [6] J. Hald, Microstructure and long-term creep properties of 9-12%Cr steels, International Journal of Pressure Vessels and Piping 85/1-2 (2008) 30-37. DOI: https://doi.org/10.1016/j.ijpvp.2007.06.010
  • [7] J. Hald, High-alloyed martensitic steel grades for boilers in ultra-supercritical power plants, in: A. Di Gianfrancesco (ed.), Materials for ultra-supercritical and advanced ultra-supercritical power plants, Woodhead Publishing, Cambridge, United Kingdom, 2017, 77-97. DOI: https://doi.org/10.1016/B978-0-08- 100552-1.00003-8
  • [8] E.S. Tkachev, A.N. Belyakov, R.O. Kaibyshev, The role of deformation in coarsening of M23C6 carbide particles in 9%Cr steel, Physics of Metals and Metallography 121 (2020) 804-810. DOI: https://doi.org/10.1134/S0031918X20060162
  • [9] J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, H. Asahi, Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel, Materials Science and Engineering: A 428/1-2 (2006) 270-275. DOI: https://doi.org/10.1016/j.msea.2006.05.010
  • [10] X.Z. Zhang, X.J. Wu, R. Liu, J. Liu, M.X. Yao, Influence of Laves phase on creep strength of modified 9Cr-1Mo steel, Materials Science and Engineering: A 706 (2017) 279-286. DOI: https://doi.org/10.1016/j.msea.2017.08.111
  • [11] R.O. Kaibyshev, V.N. Skorobogatykh, I.A. Shchenkova, Formation of the Z-phase and prospects of martensitic steels with 11%Cr for operation above 590°C, Metal Science and Heat Treatment 52 (2010) 90-99. DOI: https://doi.org/10.1007/s11041-010-9239-0
  • [12] H.K. Danielsen, Review of Z phase precipitation in 9-12%wt. Cr steels, Materials Science and Technology 32/2 (2016) 126-137. DOI: https://doi.org/10.1179/1743284715Y.0000000066
  • [13] L. Cipolla, H.K. Danielsen, P.E. Di Nunzio, D. Venditti, J. Hald, M.A.J. Somers, On the role of Nb in Z-phase formation in 12%Cr steel, Scripta Materialia 63/3 (2010) 324-327. DOI: https://doi.org/10.1016/j.scriptamat.2010.04.025
  • [14] G. Golański, A. Zielińska-Lipiec, A. Zieliński, M. Sroka, Effect of long-term service on microstructure and mechanical properties of martensitic 9%Cr steel, Journal of Materials Engineering and Performance 26 (2017) 1101-1107. DOI: https://doi.org/10.1007/s11665-017-2556-3
  • [15] A. Zieliński, Structure and properties of Super 304H steel for pressure elements of boiler with ultra-supercritical parameters, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 403-409.
  • [16] G. Golański, H. Purzyńska, Effect of service on micro-structure and mechanical properties of Nb-stabilised austenitic stainless steel, International Journal of Pressure Vessels and Piping 195 (2022) 104574. DOI: https://doi.org/10.1016/j.ijpvp.2021.104574
  • [17] Z. Liu, X. Wang, Ch. Dong, Effect of boron on G115 martensitic heat resistant steel during aging at 650oC, Materials Science and Engineering: A 787 (2020) 139529. DOI: https://doi.org/10.1016/j.msea.2020.139529
  • [18] F. Abe, Effect of boron on microstructure and creep strength of advanced ferritic power plant steels, Procedia Engineering 10 (2011) 94-99. DOI: https://doi.org/10.1016/j.proeng.2011.04.018
  • [19] M. Ortolani, M. D’Incau, R. Ciancio, P. Scardi, Microstructural evolution of Thor™ 115 creep-strength enhanced ferritic steel, Metallurgical and Materials Transactions A 48 (2017) 6111-6117. DOI: https://doi.org/10.1007/s11661-017-4353-x
  • [20] PN-EN 10216-2. Seamless steel tubes for pressure purposes - Technical delivery conditions - Part 2: No-alloy and alloy steel tubes with specified elevated temperature properties, PKN, Warsaw, 2020.
  • [21] Tenaris, Thor 115. Tenaris High Oxidation Resistance Steel. Available online: https://www.tenaris.com/media/haxgwl4o/thor_2019- web.pdf (Access in: 02.12.2021)
  • [22] Modern Power Systems, Thor™ 115: a new ferritic steel for advanced power plants. Available online: www.modernpowersystems.com/features/featurethort m-115-a-new-ferritic-steel-for-advanced-power-plants-6042524 (Access in: 02.12.2021)
  • [23] X. Zhou, Y. Liu, Ch. Liu, L. Yu, H. Li, Austenitizing temperature effects on the martensitic transformation, microstructural characteristics, and mechanical performance of modified ferritic heat-resistant steel, Metallurgical and Materials Transactions A 49 (2018) 3525-3538. DOI: https://doi.org/10.1007/s11661-018- 4723-z
  • [24] F.B. Pickering, Historical development and micro-structure of high chromium ferritic steels for high temperature applications, in: A. Strang, D.J. Gooch (eds.), Microstructural development and stability in high chromium ferritic power plant steels, The Institute of Materials Cambridge, London, 1997, 1-29.
  • [25] L. Qiang, Modeling the microstructure-mechanical property relationship for a 12Cr-2W-V-Mo-Ni power plant steel, Materials Science and Engineering: A 361/1-2 (2003) 385-391. DOI: https://doi.org/10.1016/S0921-5093(03)00565-3
  • [26] P. Yan, Z. Liu, H. Bao, Y. Weng, W. Liu, Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions, Materials Science and Engineering: A 588 (2013) 22-28. DOI: https://doi.org/10.1016/j.msea.2013.09.033
  • [27] A. Ferrara M. Ortolani, E. Escorza P. Scardi M. D'Incau, Microstructural evolution and steam oxidation resistance of field-tested THOR 115 steel, Proceedings of the 9th International Conference on Advances in Materials Technology for Fossil Power Plants and the 2nd International 123HiMAT Conference on High- Temperature Materials, Nagasaki, Japan, 2019, 197-204.
  • [28] G. Golański, J. Słania, M. Sroka, P. Wieczorek, M. Urzynicok, R. Krawczyk, Microstructure and mechanical properties of modern 11%Cr heat-resistant steel weld joints, Materials 14 (2021) 3430. DOI: https://doi.org/10.3390/ma14123430
  • [29] G. Golański, Microstructure and mechanical properties of Thor 155 steel after ageing, Proceedings of the UDT Conference 2021, Wisla, Poland, 2021 (in Polish).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-644d3a56-2056-4bd6-80e8-c7a6ceac9302
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.