PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Motion planning for nonholonomic systems with earlier destination reaching

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The motion planning problem consists in finding a control function which drives the system to a desired point. The motion planning algorithm derived with an endogenous configuration space approach assumes that the motion takes place in an arbitrary chosen time horizon. This work introduces a modification to the motion planning algorithm which allows to reach the destination point in time, which is shorter than the assumed time horizon. The algorithm derivation relies on the endogenous configuration space approach and the continuation (homotopy) method. To achieve the earlier destination reaching a new formulation of the task map and the task Jacobian are introduced. The efficiency of the new algorithm is depicted with simulation results.
Rocznik
Strony
269--283
Opis fizyczny
Bibliogr. 18 poz., wykr., wzory
Twórcy
autor
  • Department of Control Systems and Mechatronics, Wrocław University of Science and Technology, Janiszewski str. 11/17, 50-372 Wrocław, Poland
Bibliografia
  • [1] F. Alouges, Y. Chitour and R. Long: A motion-planning algorithm for the rolling-body problem, IEEE Transactions on Robotics, 26(5), (2010), 82-836.
  • [2] S. C. Amiss and M. Guay: Motion planning by the homotopy continuation method for control-affine systems, In American Control Confere (ACC), pp. 1767-1772, Montreal, June 2012.
  • [3] N. Boizot and J. Gauthier: Motion planning for kinematic systems, IEEE Transactions on Automatic Control, 58(6), (2013), 1430-1442.
  • [4] Y. Chitour: A continuation method for motion-planning problems. ESAIM: COCV, 12, (2006) 13-168.
  • [5] Y. Chitour and H. J. Sussmann: Line-integral estimates and motion planning using the continuation method, In J. Baillieul, S. S. Sastry, and H. J. Susmann, Eds., Essays on Mathematical Robotics, pages 91–125. Springer-Verlag, New York, 1998.
  • [6] A. J. Häusler, A. Saccon, A. P. Aguiar, J. Hauser and A. M. Pascoal: Energy-optimal motion planning for multiple robotic vehicles with collision avoidance, IEEE Transactions on Control Systems Technology, 24(3), (2016), 867-883.
  • [7] J. Karpińska and K. Tchoń : Continuation method approach to trajectory planning in robotic systems, In 16th International Conference on Methods Models in Automation Robotics (MMAR), pages 51–56, Aug 2011.
  • [8] S. M. Lavalle: Planning Algorithms, Cambridge University Press, Cambridge, 2006. Available at http://planning.cs.uiuc.edu/.
  • [9] G. Pajak and I. Pajak: Planning of a point to point collision-free trajectory for mobile manipulators, In 10th Int. Workshop on Robot Motion and Control, pages 142–147, Poznan, 2015.
  • [10] A. Ratajczak: Planowanie ruchu układów nieholonomicznych z wcześniejszym osiąganiem celu, In K. Tchoń and C. Zieliński, Eds., Postępy Robotyki, 2, pages 585-594, Oficyna Wydawnicza Politechniki Warszawskiej, 2016.
  • [11] A. Ratajczak: Egalitarian vs. prioritarian approach in multiple task motion planning for nonholonomic systems, Nonlinear Dynamics, 88(3), (2017), 1733-1747.
  • [12] A. Ratajczak and K. Tchoń: Parametric and non-parametric Jacobian motion planning for non-holonomic robotic systems, J. Intell. Robot. Syst., 77(3), (2015), 445-456.
  • [13] J. Ratajczak and K. Tchoń: Dynamically consistent Jacobian inverse for mobile manipulators, Int. Journal of Control, 89(6), (2016), 1159-1168.
  • [14] E. D. Sontag: Mathematical control theory: Deterministic finite dimensional systems, Springer-Verlag, New York, 2 edition, 1998.
  • [15] K. Tchoń: Endogenous configuration space approach: An intersection of robotics and control theory, In N. van de Wouw, E. Lefeber, and I. Lopez Arteaga, [Eds.], Nonlinear Systems - Techniques for Dynamical Analysis and Control, volume 470 of Lecture Notes in Control and Information Sciences, pages 209–234. Springer, 2017.
  • [16] K. Tchoń and J. Jakubiak: Endogenous configuration space approach to mobile manipulators: a derivation and performance assessment of Jacobian inverse kinematics algorithms, Int. Journal of Control, 76(14), (2003), 1387-1419.
  • [17] K. Tchoń, A. Ratajczak and I. Góral: Lagrangian Jacobian inverse for nonholonomic robotic systems. Nonlinear Dynamics, 82(4), (2015), 1923-1932.
  • [18] K. Zadarnowska: Switched modeling and task–priority motion planning of wheeled mobile robots subject to slipping, J. Intell. Robot. Syst., 85(3), (2017), 446-469
Uwagi
EN
This research was supported by the Wrocław University of Science and Technology under a statutory research project.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-644ae560-a064-4630-99bd-030ea5e8d3a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.