PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical and Experimental Analysis of Mg/Al Bimetallic Handle Forging Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper reports the results of theoretical and experimental studies of the process of die forging a bimetallic door handle intended for the production of a helicopter. The aim of the studies was to develop and implement a technology for die forging of a product with a specific mass similar to that of magnesium alloys which will have, however higher corrosion resistance. Numerical modelling and industrial tests were carried out based on the previously forging processes for an AZ31 alloy door handle. The material for the tests was a bimetallic bar produced by the explosive welding method, in which the core was of alloy AZ31, and the cladding layer was made of 1050A grade aluminium. The studies were conducted for two variants: Variant I – the forging process was mapped by numerical modelling and industrial tests for the die shape and parameters used in the forging of the AZ31alloy door handle, Variant II – the tool shape was optimized and process parameters were selected so as to obtain a finished product characterized by a continuous Al layer. From the theoretical studies and experimental tests carried out it has been found that the application of the Variant I does not assure that a finished door handle characterized by a continuous cladding layer will be produced. Within this study, a novel method of bimetallic door handle die forging (Variant II) has been developed, which limits the amount of the flash formed and assures the integrity of the cladding layer.
Twórcy
autor
  • Częstochowa University of Technology, 69 Dąbrowskiego Str., 42-200 Częstochowa, Poland
autor
  • Częstochowa University of Technology, 69 Dąbrowskiego Str., 42-200 Częstochowa, Poland
autor
  • Lublin University of Technology, 40A Nadbystrzycka Str., 20-618 Lublin, Poland
autor
  • Częstochowa University of Technology, 69 Dąbrowskiego Str., 42-200 Częstochowa, Poland
Bibliografia
  • [1] M. Hawryluk, Review of selected methods of increasing the life of forging tools in hot die forging processes, Arch. Civ. Mech. Eng. 16 (4), 845-866 (2016).
  • [2] Ch. Choi, A. Groseclose, T. Altan, Estimation of plastic deformation and abrasive wear in warm forging dies, J. Mat. Proc. Techn. 212 (8), 1742-1752 (2012).
  • [3] H. Jeong, J. Cho, H. Park, Microstructure prediction of Nimonic 80A for large exhaust valve during hot closed die forging, J. Mat. Proc. Techn. 162, 504-511 (2005).
  • [4] Z. Gronostajski, M. Hawryluk, The main aspects of precision forging, Arch. Civ. Mech. Eng. 8 (2), 39-55 (2008).
  • [5] K. Osakada, X. Wang, S. Hanami, Precision forging process with axially driven container, J. Mat. Proc. Techn. 71, 105-112 (1997).
  • [6] E. Doege, R. Bohnsack, Closed die technologies for hot forging, J. Mat. Proc. Techn. 98, 165-170 (2000).
  • [7] P. F. Bariani, S. Bruschi, T. Dal Negro, Integrating physical and numerical simulation techniques to design the hot forging process of stainless steel turbine blades, Int. J. Mach. Tools & Man. 44, 945-951 (2004).
  • [8] R. Neugebauer, M. Kolbe, R. Glass, New warm forming processes to produce hollow shafts, J. Mat. Proc. Techn. 119 (1-3), 277-282 (2001).
  • [9] M. Tocci, A. Pola, G. M. La Vecchia, M. Modigell, Characterization of a new aluminium alloy for the production of wheels by hybrid aluminium forging, Proc. Eng. 109, 303-311 (2015).
  • [10] A. Gontarz, Z. Pater, K. Drozdowski, Forging on hammer of rim forging from titanium alloy Ti6Al4V, Arch. Metall. Mat. 57 (4), 1239-1246 (2012).
  • [11] K. H. Jung, S. Lee, Y. B. Kim, B. Ahn, E. Z. Kim, G. A. Lee, Assessment of ZK60A magnesium billets for forging depending on casting methods by upsetting and tomography, J. Mech. Sc. Techn. 27 (10), 3149-3153 (2013).
  • [12] K. U. Kainer (Ed.), Magnesium - Alloys and Technology, Wiley-VCH, Weinheim, (2004).
  • [13] H. Hea, S. Huanga, Y. Yia, W. Guo, Simulation and experimental research on isothermal forging with semi-closed die and multi-stage-change speed of large AZ80 magnesium alloy support beam, J. Mat. Proc. Techn. 246, 198-204 (2017).
  • [14] A. Gontarz, Theoretical and experimental research of hammer forging process of RIM from AZ31 magnesium alloy, Metal. 53 (4), 645-648 (2014).
  • [15] H. Miura, W. Nakamura, M. Kobayashi, Room-temperature multi-directional forging of AZ80Mg alloy to induce ultrafine grained structure and specific mechanical properties, Proc. Eng. 81, 534-539 (2014).
  • [16] M. Esmaily, J. E. Svensson, S. Fajardob, N. Birbilis, G. S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L. G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Progr. in Mat. Sc. 89, 92-193 (2017).
  • [17] I. B. Singh, M. Singh, S. Das, A comparative corrosion behaviour of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution, J. Magn. Alloy. 3 (2), 142-148 (2015).
  • [18] B. Zhu, W. Liang, X. Li, Interfacial microstructure, bonding strength and fracture of magnesium-aluminium laminated composite plates fabricated by direct hot pressing, Mater. Sci. Eng. A 528, 6584-6588 (2011).
  • [19] H. Chang, M. Y. Zheng, W. M. Gan, K. Wu, E. Maawad, H. G. Brokmeier, Texture evolution of the Mg/Al laminated composite fabricated by the accumulative roll bonding, Scr. Mat. 61, 717-720 (2009).
  • [20] O. Golovko, S. M. Bieliaiev, F. Nürnberger, V. M. Danchenko, Extrusion of the bimetallic aluminium-magnesium rods and tubes, Forsch Ing. 79, 17-27 (2015).
  • [21] T. Tokunaga, D. Szeliga, K. Matsuura, M. Ohno, M. Pietrzyk, Sensitivity analysis for thickness uniformity of Al coating layer in extrusion of Mg/Al clad bar, Int. J. of Adv. Man. Techn. 80, 507-513 (2015).
  • [22] S. Mroz, G. Stradomski, H. Dyja, A. Galka, Using the explosive cladding method for production of Mg-Al bimetallic bars, Arch. Civil Mech. Eng. 15, 317-323 (2015).
  • [23] N. Liu, L. Chen, Y. Fu, Y. Zhang, T. Tan, F. Yin, C. Liang, Interfacial characteristic of multi-pass caliber-rolled Mg/Al compound castings, J. Mat. Proc. Techn. 267, 196-204 (2019).
  • [24] C. Binotsch, A. Feuerhack, B. Awiszus, M. Handel, D. Nickel, D. Dietrich, Forming of co-extruded Al-Mg hybrid compounds, Conf. Meform, Altenberg, Saxony, 94-107 (2014).
  • [25] C. Binotsch, D. Nickel, A. Feuerhack, B. Awiszus, Forging of Al-Mg compounds and characterization of interface, Proc. Eng. 81, 540-545 (2014).
  • [26] S. Mróz, P. Szota, T. Bajor, A. Stefanik, Theoretical and experimental analysis of formability of explosive welded Mg/Al bimetallic bars, Arch. Metall. Mater. 62 (2), 501-507 (2017).
  • [27] S. Mróz, P. Szota, T. Bajor, A. Stefanik, Formability of explosive welded Mg/Al bimetallic bar, Key Eng. Mat. 716, 114-120 (2016).
  • [28] S. Mróz, A. Gontarz, K. Drozdowski, H. Bala, P. Szota, Forging of Mg/Al Bimetallic handle using explosive welded feedstock, Arch. Civ. Mech. Eng. 18 (2), 401-412 (2018).
  • [29] A. Gontarz, K. Drozdowski, A. Dziubinska, G. Winiarski, A study of a new screw press forging process for producing aircraft drop forgings made of magnesium alloy AZ61A, Air. Eng. Aero. Techn. 90 (3), 559-565 (2018).
  • [30] F. H. Norton, Creep of steel at high temperature, McGraw Hill, New York (1929)
  • [31] N. J. Hoff, Approximate analysis of structures in the presence of moderately large steps deformation, Quart, Appl. Mech. 2, 49-55 (1954).
  • [32] A. Gontarz, A. Dziubińska, Ł. Okoń, Determination of friction coefficients at elevated temperatures for some Al, Mg and Ti alloys, Arch. Metall. Mat. 56 (2), 379-384 (2011).
  • [33] M. G. Cockroft, D. J. Latham, Ductility and the workability of metals, J. Inst. Met. 96, 33-39 (1968).
  • [34] A. Stefanik, S. Mróz, P. Szota, Determination of the critical value of normalized Cockroft - Latham criterion for the AZ31 magnesium alloy based on tensile test, Conf. METAL 27th International Conference on Metallurgy and Materials, 470-475 (2018).
  • [35] X. Duan, X. Velay, T. Sheppard, T, Application of finite element method in the hot extrusion of aluminium alloys, Mater. Sci. Eng. A 369, 66-75 (2004).
  • [36] A. Hensel, T. Spittel, Kraft und Arbeitsbedarf Bildsomer Formgeburgs, Verfahren, VEB Deutscher Verlang für Grundstoffindustrie, Lipsk, (1979).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6449423c-eb18-468b-983a-b7eceddda38a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.