
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N° 1 2016

58

AJVM – Java Virtual Machine Implemented in ActionScript 3.0

Arkadiusz Janik, Jakub Krawczyk

Submitted: 5th January 2016; accepted: 2nd February 2016

DOI: 10.14313/JAMRIS_1-2016/8

Abstract:
This paper describes the concept and implementation
details of AJVM – state-of-the art Java Virtual Machine
(JVM) implemented in ActionScript 3.0. Action Script
is an objective programming language that supports
compilation to Java bytecode. In the presented solu-
tion there has been a novel idea utilized – to use the
other Virtual Machine’s execution environment (Action-
Script Virtual Machine) to build Java Virtual Machine.
The subset of features specified in JVM Specification
v.2 supported by AJVM has been chosen in a way which
enables the machine to be used in many practical ap-
plications both in the commercial context as well as in
science. As the architecture of AJVM is modular, the ex-
tension of its features in the future will not cause any
difficulties. The implementation of AJVM in ActionScript
3.0 which is executed by ActionScript Virtual Machine
(AVM) makes it possible to use Java code in applications
written in ActionScript 3.0. It spawns many new oppor-
tunities considering that AVM is a part of FlashPlayer –
commonly used multimedia player available in the form
of plugins for the majority of modern web browsers, in-
cluding mobile versions.

Keywords: JVM, Action Script, bytecode

1. Introduction
Traditional, commercial implementations of JVM

Specification aim to increase the performance of
a Virtual Machine (VM). As a result VMs are usually
implemented in low level programming languages,
tightly integrated with Operating System (OS) and
hardware (Just In Time compilers that compile by-
tecode into native code of the hardware platform).
The goal of AJVM is to execute Java applications in
a variety of computers equipped mainly with a web
browser, to increase code reusability by making it
possible to use Java libraries in Flash applications
and to provide convenient platform for end-users to
observe and understand concepts behind JVM. On
top of that the solution extends Flash platform with
new features: multi-threading, blocking operations,
generic classes as well as a new concept of execut-
ing bytecode.

1.1. Basic Terms

There are two major types of virtual machines:
emulators and interpreters [9]. The emulator is a

solution allowing to execute (in an isolated environ-
ment) the whole OS and other software designed for
a specific platform due to hardware virtualization
(VMWare Workstation or Oracle xVM VirtualBox).
The interpreter is software capable of executing bina-
ry, precompiled code which is an output of a built-in
compiler defining its own architecture as of a virtual
device [7]. In the further part of this paper the term
virtual machine will be used to denote the interpreter.

1.2. Flash Platform and ActionScript 3.0
Adobe Flash technology (previously known as

Macromedia Flash) is a multimedia platform en-
abling new features in web pages: animations, video
streaming, interactivity commonly used to imple-
ment games, advertisements as well as more sophis-
ticated and complex applications.

Flash applications are published as SWF files
(Shockwave Flash Object). Usually there is a single
file per application even though it may contain many
libraries and multimedia resources. In Flash 5 the
concept of actions introduced in Flash 4 was extend-
ed and, for the first time, Action Script term was used
in the context of a programming language [10, 11].
Flash 7 was released together with the second ver-
sion of ActionScript programming language: such
features as type-control (during compilation) and
inheritance based on classes were introduced. Flash
Players 9 was released with ActionScript 3.0 – the
language was redesigned significantly and, to sup-
port downgrade compatibility, there are two virtual
machines in the player: AVM1 (to support Action-
Script 1.0 and 2.0) and AVM2 (to support Action-
Script 3.0) [14]. The number of new features have
been introduced to the player including performance
optimization (hardware acceleration for DirectX and
OpenGL), type-control (during code compilation and
execution), separation of class-based and prototype-
based inheritance, using packages, namespaces and
regular expressions, new bytecode format, support
for E4X format and others.

To sum up: ActionScript 3.0 is object-based, im-
perative programing language with strong type-con-
trol, compiled to bytecode being executed on AVM2
virtual machine, single-threaded (driven by events
triggered by Flash Player) so not supporting blocking
methods, with automatic memory management (Gar-
bage Collector), not supporting generic classes, not
supporting anonymous classes.

In the further part of the paper any references to
Action Script will refer to Action Script 3.0.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N° 1 2016

Articles 59

2. Related Work
There are two major aspects of the contribution

of our work:
Implementation of Java Virtual Machine in a non-

standard environment
Emulation of Java platform inside Flash Player.
In the opinion of the authors, there are no solu-

tions other than AJVM that handle both: Action Script
and JVM. This makes AJVM a unique system capable of
emulating Java platform inside Flash Player.

There are number of publications on the subject
of non-standard JVMs including the ones mentioned
below:

Jamiga – the goal of the project is to execute Java
applications on Amiga computers [16].

JC – the property of the JVM is a novel approach
to executing bytecode. All Java classes are translated
on-the-fly to source code in C language and then com-
piled to native code thus enabling performance simi-
lar to traditional Just In Time Compilers (JITs) [17].

Squawk – implementation of JVM for Java ME (Mi-
cro Edition) for embedded systems and small, mobile
devices. All elements, except for low-level modules sup-
porting I/O operations and OS specific code, were im-
plemented in Java (including Garbage Collector) [15].

GNU Classpath – Java Standard Library distribut-
ed under GNU license providing a great base to build
own JVMs [20].

JOP – Java Optimized Processor is a hardware im-
plementation of JVM with predictable execution time
for embedded real-time systems. Due to the small
size of the processor used, it can be implemented in
a low cost FPGA (Field-Programmable Gate Array).
For low volume systems, the flexibility of an FPGA can
be of more importance though slightly more expen-
sive than conventional processors. The processor was
designed in VHDL programming language (Very high
speed Hardware Description Language). The proces-
sor executes bytecode directly, without necessity to
compile in-time nor to parse/interpret class files. Us-
ing FPGA allows JOP to dynamically declare stack size
(which is consistent with JVM –stack-based VM rather
than register-based) [21].

Sable VM – is a highly portable and efficient Java
virtual machine, using state-of-the-art interpretation
techniques. Its goals is to be reasonably small, fast,
and compliant with the various specifications (JVM
specification, JNI, invocation interface, etc.) [18].

2.1. 	Emulators of Other Platforms Implemented
in the Flash

Even though ActionScript 3.0 is relatively new lan-
guage there have been several emulators implement-
ed so far:

FC64 – Flash Commodore 64 Emulator – FC64 is
a low-level, fully functional emulator of Commodore
64 allowing a user to execute applications designed
for Commodore 64 as well as to write code in BASIC
programming language [22].

FlashZXSpectrum48k – Sinclair ZX Spectrum
Emulator} – FlashZXSpectrum48k is a solution simi-
lar to FC64. The difference is that it emulates Sinclair
ZX Spectrum platform.

AminNes – Flash NES Emulator – Flash NES Emu-
lator is an emulator of Nintendo Entertainment System
– 8 bits gaming console equipped with 2kB RAM and
2KB video memory. The emulator supports MOS 6502
and guarantees the highest quality of rendered video.

Flip8 – CHIP-8 Flash Emulator – Flip8 is an emu-
lator of CHIP-8. CHIP-8 is a virtual machine designed
in 70s used to interpret programming language called
CHIP-8. It used to be installed on a graphical calcu-
lators. Flip8 is an emulator able to execute bytecode
including 35 different operations [19].

3. Implementation of JVM in ActionScript 3.0
ActionScript Java Virtual Machine (AJVM) was

implemented in Action Script [13]. It implements
a subset of features described in the specification of
JVM v.2.0. The sections included below present more
information on the architecture and implementation
problems the authors of this article had to solve.

3.1. Virtual Machine vs Standard Library
The crucial part of the implementation of any

Java Virtual Machine is a standard library – the im-
plementation of core Java classes described by JVM
specification [4]. Even execution of the simplest Hello
Word Java application requires hundreds of core Java
classes to be present and loaded into VM. The solution
described in the paper contains following elements in
terms of a standard library:

AJVM library – ActionScript 3.0 library contain-
ing executable files of AJVM, ready to be used in any
Flash or Flex projects. Flex is a set of components al-
lowing a developer to write RIA applications. It is be-
ing compared to technologies such as XUL, JavaFX or
Silverlight [12].

ART standard library – an equivalent of Java
standard library included in any JVM distributions
(such as JRE System Library for JavaSE). A standard
library is specific for VM implementation as it expects
native implementation of selected methods in the VM.
For the purpose of AJVM we implemented a standard
library called ART (ActionScript Runtime) which is
based on GNU Classpath.

As the authors focused on the selected features of
JVM, the ART is not a complete implementation of the
standard library though it is possible to extend the
implementation in future.

3.2. High Level Overview of AJVM
AJVM is available as an object created by the pro-

grammer’s code inside his/her Flash application (in
the similar way as for Jython interpreter for Python
programming language). Consequently, the program-
mer’s code has a full control over AJVM. Moreover,
several isolated instances of AJVM within the single
Flash host application can be created.

Due to the features of the Flash platform usu-
ally the code of Flash host-application and the code
of AJVM are distributed in a single SWF file whereas
Java classes that are part of ART and Java classes of
the programmer’s code will be distributed as JAR ar-
chives (or single *.class files) located on the same web
server.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N° 1 2016

Articles60

Figure 1 presents a high level overview of AJVM.
As mentioned before, the programmer’s Flash

code has a full control over AJVM particularly in the
below areas:

Starting and stopping AJVM instances – instanc-
es of AJVM are independent objects created, started
and stopped in moments which are arbitrarily chosen
during the lifetime of host Flash application.

Configuring classpath – similarly to traditional
JVMs, also AJVM needs classpath [3] to be defined to
know where to look for compiled Java classes. Unlike
traditional JVMs, AJVM does not have access to the file
system thus it needs to download class files from a
web server. AJVM adds a prefix with the name of its
own web server to compose URLs used to locate class
code. For instance, if one assumes that AJVM is used in
Flash application available under http://domain.serv-
er.com/apps/test/index.html and SWF file is available
under http://domain.server.com/apps/test/applica-
tion.swf. Flash host application defined the classpath
as java/rt;java/classes and then executed Java class
pl.edu.agh.test.Example. It means that AJVM tries to
load the class from one of the locations below (until
the first successful try).

http://domain.server.com/apps/test/java/rt/pl/
edu/agh/test/Example.class

http://domain.server.com/apps/test/java/class-
es/pl/edu/agh/test/Example.class

AJVM supports dynamic, on-the-fly addition of
new entries to the class path.

Specifying main class – Each JVM starts the ex-
ecution of the user’s code following the method:

public static void main(String args[]);
defined in the class specified as JVM’s argument.

AJVM also expects the name of the main class to be
provided (as one of the mandatory elements of the
configuration of AJVM).

Configuring lifecycle of VM – As mentioned be-
fore Flash is a single-threaded environment. The
programmer’s code is executed solely in response to
events triggered by Flash Player (a mouse click, a key-
board event etc.). It is expected that an event handler
gives control back to the Flash Player as soon as pos-
sible to guarantee smooth execution.

As the consequence, AJVM has to work in very
short time slots divided by pauses long enough to
handle other no Java events and to render the next
frame of Flash animation. A developer of a Flash appli-

cation defines by themselves (usually statically, when
compiling the application) frequency of refreshing
the application’s view in a web browser. Flash Player
takes all available steps to support the requested FPS
(Frames Per Second) parameter.

We implemented similar logic for AJVM – a pro-
grammer using AJVM defines (as one of the param-
eters of AJVM configuration) how many milliseconds
per frame AJVM can execute before giving the control
back to Flash application. AJVM monitors its execu-
tion time and breaks the execution of the bytecode
immediately when the requested threshold is met.
In future we plan to add adaptive mechanism inside
AJVM so that it dynamically changes the parameter
depending on complexity of Java and/or Flash code
and available computational power (for instance to
slow down execution of Java code during dynamic
animations of a Flash application).

Implementing native methods – some methods
delivered with Java standard library are native meth-
ods. Similarly, user’s methods can also be native. AJVM
uses native code to implement ART thus enabling us-
ers to declare and implement own native methods –
written in ActionScript 3.0. As a result the user’s ap-
plications can communicate with Flash applications.

Configuring logger – one of the goals of imple-
menting AJVM was to provide platform that can be
used by users to experiment with and learn about
architecture of VMs. Monitoring is crucial thus we
equipped AJVM in easy to use logger supporting four
levels: SEVERE, WARNING, INFO and DEBUG.

3.3. Executing Bytecode in AJVM
One of innovations of AJVM is a fully objective ap-

proach to VM’s major functionality which is executing
bytecode. The overview on the standard location of
bytecode execution module in a typical JVM’s archi-
tecture can be found in the Figure 2.

In Java the bytecode is one of many attributes of
a method. In JVM specification bytecode instructions
are identified as numbers (0x00 till 0xca). An execu-
tion module of a traditional JVM’s works on binary
instructions kept in a method area memory and rep-
resented in an unchanged way comparing to the com-
piled bytecode. The only exception is replacing con-
stant pool elements with symbolic references (and,
of course JIT compilation to native code). There are

Fig. 1. High level overview of AJVM

Fig. 2. Location of bytecode execution module in a stan-
dard JVM’s architecture

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N° 1 2016

Articles 61

mobile implementations of JVMs utilizing XIP concept
(eXecution In Place) thus not copying bytecode to the
method area but referring to *.class files whenever
the instruction is being executed [6]. There are fol-
lowing implications of the above mentioned models:

Necessity to interpret the instruction’s code every
time the instruction is executed – in Java’s bytecode
one needs to interpret the instruction to understand
how many bytes after the instruction are the instruc-
tion’s arguments, which is necessary to obtain the be-
ginning of the next instruction.

Necessity to derefer pointers to constant pool every
time the instruction is executed – the instruction’s argu-
ments can refer to classes, methods or fields addressed
as entries in the constant pool (for instance: new, an-
ewarray instructions which allocate objects or arrays,
invokevirtual instruction which calls a method etc.).

The above approach may lead to a significant over-
load. For instance: getting a value of a non-static field
of an object requires following steps to be executed:

Retrieve (from bytecode and using information
from an entry in a constant pool) an address of a data
structure with the description of the field,

Retrieve (from the field’s description)
an address of the data structure with the
description of the field’s class,

Retrieve an offset of the field using
information about its class and its fully
qualified name,

Retrieve from the data structure repre-
senting the object of the field the value of
the field (using the offset of the fields and
a data type of the field).

The above mentioned steps are not ac-
tioned for JIT compilation (JIT) [8].

The low performance of the standard
approach to the bytecode execution and
the access to constant pool data motivated
us to look for another approach in which
the following steps were taken:

The construction of objective rep-
resentation of Java class – Construction
of syntactic parse tree, which is an object
representation of elements in class file
(see Figure 3). The representation is not a

typical graph representation of classes and relations
between them. There are following known limita-
tions:

Indirect references – Apart from direct relations
between a class and its methods (or between a method
and its arguments) a traditional syntactic parse tree
stores relations between some objects purely by their
identifiers. For instance: to retrieve any attributes of a
class com.test.B one has to take string “com.test.A” and
look for a graph of the class with such a name. Such an
approach requires checking whether the object with
such a name exists and this is time consuming.

Bytecode in a binary representation – A part of
a syntactic parse tree – methods’ bytecode – was not
parsed at all. Inside instructions of a method there
are references to classes, other methods and fields
(which are also elements of syntactic parse tree),
which remain in a binary representation as long as
the bytecode is executed.

The above syntactic parse trees can be used to
build even more effective representation shown in
Figure 3. All relations between represented classes,
methods, fields and even external types can be re-
solved immediately after the first step of class loading
process (parsing the class representation) thus mak-
ing execution of classes’ bytecode more efficient.

Building object-oriented representation of the
bytecode – As presented on the diagram from the
previous section we decided to use object-oriented
representation also for the bytecode. In a traditional
approach the machine code is represented as a sin-
gle-dimensional sequence of instructions executed
one-by-one. In practice, instruction pointer very of-
ten changes in a more complex way due to branch
instructions, conditional or unconditional jumps etc.
The place in the bytecode that the control should be
transferred to (after a branch instruction) is calcu-
lated as an offset relative to the current instruction
pointer. It means that executing a branch instruction
requires calculating the new address and reading the
bytecode instruction from that address. The approach

Fig. 4. A sample, full graph of classes and relations between them

Fig. 3. Simplified version of syntactic parse tree for Java
classes in AJVM

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N° 1 2016

Articles62

we have taken is using a novel idea: after parsing the
class, there is an instruction execution graph being
built for each non-abstract method (see Figure 5).

Operation codes are mapped on classes of respec-
tive instructions. Whenever the instruction needs to
be executed, the object’s method is executed with the
instruction’s arguments. Each object has the knowl-
edge (stored as reference to) about objects repre-
senting classes, fields and methods that are required
by the instruction. Similarly, there are references to
a consecutive instruction (or to consecutive instruc-
tions for branch instructions) stored in the object.
The method stores the reference to the first instruc-
tion from its method whereas the bytecode stores the
reference to its method so that it knows where to give
control back when returning.

Delegation of executing an instruction to its
object representation – Using an objective nature of
ActionScript 3.0 language one can create full hierar-
chy of classes for Java instructions. A part of such a
hierarchy is presented in Figure 6.

Each instruction implement method ex-
ecute() declared in Instruction interface
(design pattern Command). An argument
of the method is object FrameExecution-
Context, which represents a single stack
frame. The object’s diagram can be found in
Figure 7.

FrameExecutionContext object pro-
vides access to computational stack and
current values of local variables thus allow-
ing an instruction to execute (itself) in the
current context. After execution in the way
specific for the instruction (for instance:
pop two values from the stack, add them
and push on to stack for iadd instruction)
JVM has to set up the next instruction to be
executed. As a result, conditional instruc-
tions can control their thread’s execution.
An instruction can use additional references
passed when the class was parsed and the
graph was built. For instance: class Jget-
fieldInstruction, which is representing get-

field instruction stores the reference to an object of
JVMField class, allowing it to load the current value
of a field.

This is a decentralized approach: each of more
than 200 bytecode’s instructions has their implemen-
tation (in the execute() method) thus the conceptual
schema of AJVM (see Figure 8) differs significantly
from the traditional implementations of JVM.

The bytecode execution module in AJVM is virtual-
ized. The module is created by instructions of loaded
bytecode expressed as objects. It means that AJVM
neither contains nor uses binary representation of
bytecode. There are following advantages of such an
approach:

One-time interpretation of bytecode – Binary
representation of bytecode is read by AJVM once,
when the class is loaded and the instruction graph is
built.

Novel implementation of reflection – All class-
es, methods, fields and their attributes have objective
representations thus the implementation of reflection

Fig. 5. Sample instruction execution graph shown in the context of objects it uses

Fig. 6. A part of a diagram showing objective hierarchy of Java
instructions

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N° 1 2016

Articles 63

does not require referencing native
code.

Clear and flexible architec-
ture – Inspection of the instruc-
tion graph as well as dependencies
between classes make possible to
extend AJVM in the future with in-
teresting features such as dynamic
code transformation or visualiza-
tion of code execution which can be
used to analyze and optimize code
performance.

4. 		 Additional Remarks on
AJVM Implementation

4.1.	Implementing Exception
Handlers

One of the attributes of a com-
piled class is an exception handlers
table. The table is used to store
information about the class of an
exception being handled, the first
instruction being protected by the
handler, the offset of the last in-
struction being protected and the
offset of the first instruction of the
exception handling procedure.

In AJVM there are no instruction
offsets at all, as they are replaced
by the instruction graph. Conse-
quently exception handlers have to
be defined in an objective way. Each
method has a collection of objects
representing exception handlers
(the list may be empty for methods
without try-catch blocks). An object
representing an exception handler
stores references to all instructions
being protected (as it is impossible
to represent the set as the first in-
struction and the offset). The idea is
presented in Figure 9.

4.2. Garbage Collection
We solved the problem of Auto-

matic Memory Management (AAM
[5]) using features of ActionScript
3.0 which is equipped with AMM.
Flash VM (AVM2) is equipped with
Garbage Collector thus the easiest
way of solving GC related problems
is to:
•	 Resign from our own heap in

AJVM – our JVM does not use
heap at all.

•	 Encapsulate each and every
Java object inside native Action-
Script objects – it is possible due
to representing each Java object as
an instance of class JVMObject
defined in ActionScript 3.0 al-
located on Action Script’s AVM2
heap and managed by AVM2. Each

Fig. 9. An objective representation of an exception handler table for a method

Fig. 8. Bytecode execution module in AJVM

Fig. 7. A part of a diagram of the most important classes of
AJVM execution module

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N° 1 2016

Articles64

Java object is encapsulated in ActionScript 3.0 ob-
ject. Each Action Script’s JVMObject stores a refer-
ence to the object representing the class of the Java
object and a data structure to store the Java object’s
state (value of all fields from the object’s class).

•	 Utilizing AVM2 Garbage Collector – as Java ob-
jects inside AJVM are represented by ActionScript’s
object they are managed by AVM2’s Garbage Collec-
tor. The only limitation is not to store any additional,
external references to these objects even though it
may be useful for the purpose of VM monitoring etc.

4.3. Multithreading
The traditional implementation of JVMs provides

multithreading through the mapping of Java threads
onto native threads (on the Operating System level) [1,
2]. AJVM does not have access to low level OS threads
as it is limited by Flash Player it is run in and which
executes ActionScript 3.0’s code just inside the event-
handler’s thread. Consequently, it was necessary to
implement the multithreading model of our own de-
sign at the level of application. We had to use an ob-
jective representation of a thread as a part of VM. An
instance of AJVM holds the collection of instances of
JVMThread class. New objects are added to the col-
lection every time a bytecode instruction executes
java.lang.Thread.start() method, and are removed
while returning from java.lang.Thread.run() meth-
od. As soon as the collection is empty the AJVM stops.

AJVM works in cycles and each cycle is about ex-
ecuting an amount of bytecode’s instructions of each
active thread. The length of AJVM’s cycle (measured
as a period of time as opposed to a number of instruc-
tions) is AJVM configuration item. The available time
of each cycle is split between all threads accordingly
to their priorities. The simplest way to meet the above
requirements is to implement RoundRobin algorithm
with the handling of priorities. Each AJVM cycle con-
sists of/requires the following steps:

Calculate the possible time of the end of the cycle
endTime (current time + configured cycle time).

If endTime is reached, give the control back to
event handling procedure (thus finishing the cycle).

For each thread in the collection:
Execute method step() a number of times basing

calculations on the priority of threads.
If the thread ends(execution stack is empty), re-

move the thread from the collection.
Go back to step 2.
Obviously, the above algorithm does not apply to

“blocked” or “waiting for monitor” (monitorenter in-
struction) threads.

4.4. Native Interface
Native interface of AJVM allows a user to provide

their implementation of Java classes as functions of
ActionScript 3.0. It is done during VM initialization
thanks to the method which binds a native method (its
class, name and signature) with ActionScript 3.0 ob-
ject that represents the closure of the function (Call-
back design pattern). Figure 10 demonstrates sample
implementation and the registration of native method
sqrt) in VM’s case.

Fig. 10. A sample code used to register a native method
in AJVM

Arguments of the function are used to pass fol-
lowing elements from native interface of AJVM to the
user’s method:
•	 The context of the current execution frame in the

execution stack frame – the reference to the case
of FrameExecutionContext class that gives the
access to properties of the current Java thread as
well as to the stack and the local area of the stack
frame. It allows the native method to use informa-
tion that is forbidden for Java code (for instance to
implement reflection with the use of the objective
representation of classes and methods).

•	 The values of arguments passed to Java method.
args contains 0 or more arguments passed to the
native method by the Java code. Primitive types are
mapped onto corresponding types of ActionScript
3.0 whereas objects are represented by their en-
capsulations (JVMObject) – in the native code one
can easily get their classes and access fields (also
private) in a way similar to the one used in the re-
flection.

•	 Callback that returns from native method – even
though keyword return is present in ActionScript
3.0, employing it for returning from function would
significantly reduce the capabilities of native
methods. Each native implementation would have
to give control back to AJVM soon after getting it
as Flash Player uses a single thread. Implementing
return functionality in the described way allows
a developer to implement blocking methods (for
instance input/output operations). A thread call-
ing a native method is blocked until the callback
is executed. In practice it means that even void
methods (not returning anything) should contain
onReturn(null) call at the end.

5. Test Cases
The output of the implementation part of our work

includes an ActionScript 3.0 library implementing the
most important features of Java Virtual Machine. The
quality of the Virtual Machine can be measured with
use of many indicators including the two most impor-
tant: compatibility with JVM specification version 2
and performance. As was mentioned at the beginning
of this paper, the full compliance with JVM specifica-
tion was not our objective. Instead, we focused on
those parts of Standard Java Library that allow a de-
veloper to create the majority of typical Java applica-
tions.

Neither high performance was the goal of AJVM.
However, it is worth comparing the implementation
of AJVM with the most popular JVM – Oracle HotSpot.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N° 1 2016

Articles 65

The following testing platform was used: (VM: Java
HotSpot(TM) 64-Bit Server VM (build 21.0-b17,
mixed mode, library: Java(TM) SE Runtime Environ-
ment (build 1.7.0-b147). AJVM (plugin) – VM: AJVM,
reference version, library: ART, reference version,
Flash Player: 11.2.202.233, ActiveX plugin, Internet
Explorer 8. All tests have been executed on Intel(R)
Core(TM) i7-2630QM @ 2.0 GHz, 8 GB RAM, System
Windows 7 64-bit.

5.1. Test Case 1 – Fixed Point Arithmetic
The test was to iterate through an array of integers

and perform several calculations on each element of
the array. The results are presented in Figure 11.

Test results leave no doubts with regards to the
differences between commercial HotSpot VM and
experimental, research AJVM. Due to Just In Time
compilation used in HotSpot the code is compiled to
native representation and executed on a physical pro-
cessor rather than on a virtual machine. As a result,
calculations are done significantly faster.

5.2.	 Test Case 2 – Sorting of Floating Point
Numbers

The test was to call java.util.Arrays.sort() method of
the standard library to sort an array of double num-
bers. The results can be found in Figure 12.

Fig. 12. Execution time of the test 2 – sorting arrays of
fixed point numbers

Again HotSpot VM beats AJVM and again the major
factor is JIT implemented in AJVM. Another important
factor is that source code for arithmetic in HotSpot is
written in C which makes development optimization
techniques possible. It is worth mentioning that ex-

ecution time increases linearly in a function of array
size for both: AJVM and HotSpot virtual machines.

5.3.	 Test Case 3 – Sorting of Linked List of
java.lang. Comparable Objects

The test was to call java.util.Collections.sort()
method from the standard library to sort linked list
(java.util.LinkedList) containing objects implement-
ing compareTo() method. The test validates pointer
operations and virtual methods (unlike sorting arrays
of primitive types). The results can be found in Fig-
ure 13.

Fig. 13. Execution time of the test 3 – sorting linked lists
of comparable objects

One can see an interesting observation here: even
though both tests; test 2 and test 3 are about sorting
of a collection, the increase of execution time in test
3 is significantly greater than in test 2. The reason is
that in test 3 objects are sorted rather than numbers
which results in more object operations (compare()
method calls). And pointer operations are less effi-
cient in AJVM than in HotSpot.

5.4.	 Test case 4 – Network Connections and
Object Deserialization

The aim of the test was to establish a network con-
nection with a remote server with the use of java.net.
Socket so as to obtain some data and deserialize it.
The results can be found in Figure 14.

Fig. 14. Execution time of the test 4 – transferring data
through network connection and deserializing it

Interestingly, the difference between execution
time between AJVM and HotSpot is less visible and
do not exceeds 35%. The reason is that in the test ex-
ternal, system resources are used (network connec-
tion) intensely. In other words: it is not so important

Fig. 11. Execution time of the test 1 – performing fixed
point arithmetic

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N° 1 2016

Articles66

how elements of a virtual machine are implemented
as most operations are done on a level of OS. In other
words, a proportion of input/output operations to
other operations is higher than in previous tests.

5.5. Test Case 5 – Massive Multithreading
The test consisted of launching the number of con-

current threads, executing them and waiting for the
last one to end. The results are illustrated in Figure 15.

Fig. 15. Execution time of the test 5 – executing signifi-
cant amount of concurrent threads

The grey bar in the Figure 15 for HotSpot indi-
cates missing results – it was impossible to start so
many threads.

The major factor that contributes to smaller ex-
ecution time in AJVM comparing to HotSpot is a differ-
ent threading model used in both solutions. HotSpot,
like many other VMs maps Java threads to native OS
threads. As a result thread creation is time-consuming
operation. When there is a huge amount of threads OS
may behave unstable. AJVM emulates multithreading
programmatically – creating and starting a new thread
is as expensive as creating one more Java object.

5.6. Test Cases Summary

The conclusions drawn from the executed test cas-
es are as follows:

Tests 1, 2 and 3 leave no doubts with regards to
the differences between commercial HotSpot VM and
experimental, research AJVM. Due to Just In Time
compilation used in HotSpot the code is compiled to
native representation and executed on a physical pro-
cessor rather than on a virtual machine. As a result,
calculations are done significantly faster.

Test 4 shows more balanced results due to the sig-
nificant influence of input/output operations in com-
parison with the execution time. Input/output op-
erations are less CPU demanding thus AJVM is more
effective. The results prove clearly that in some appli-
cations AJVM can be used with success.

Test 5 provides solid evidence in favour of the exis-
tence of domains on which AJVM is more robust than
traditional VMs. The benefit of AJVM is the way thread
creation is implemented. Having said that it must be
emphasized that efficient creation of a thread does
not mean that all thread operations are more effective
on AJVM. As it was mentioned before test 5 focuses
only on thread creation rather than on measuring all
thread-related operations (creation, sleeping, waking
up, thread scheduling etc.).

5.7. Samples of AJVM Utilization
This section demonstrates sample applications of

AJVM. It describes how AJVM can be used to execute
sample Internet applications – multiuser, text chat
room.

Fig. 16. The architecture of chatroom application ex-
ecuted on AJVM

The architecture shown in Figure 16 contains the fol-
lowing elements:
•	 HTTP server – any web server to provide static

files via http protocol.
•	 Chatroom server – server implemented in Java for

real-time, multi user chat room (Java Object Seri-
alization is used).

•	 Chatroom client – client application written in
Flash using Flex components. AJVM is applied
to implement networking functionality (object
(de) serialization and transfer) as well as imple-
ment business logic (logging in, authorizing and
validating data). It is worth mentioning that the
above sample uses Java code shared between the
client and server applications: the same class-
es are loaded by HotSpot JVM (server side) and
AJVM (client side). Once SWF file (Flash applica-
tion) and Java classes are loaded, HTTP protocol
is no longer used and there is a single network
communication (TCP) established.

6. Conclusions
Authors of this paper successfully implemented

Java Virtual Machine in ActionScript 3.0. As a result
it was possible to use elements of existing elements
of a virtual machine’s infrastructure (FlashPlayer) to
build your own solution. It allowed authors to focus
on selected modules of a virtual machine (like imple-
mentation of a novel concept of bytecode execution
engine) and to use existing ones which are beyond
the scope of interest (GC, threading model etc.). Selec-
tion of an environment that supports Java bytecode
(Action Script 3.0 and Flash Player) spawns many
opportunities considering the fact that Flash Player
is commonly used in most of modern web browsers.

As shown in the previous section, AJVM can be
successfully used in implementing various applica-
tions, including Internet ones. There are many ad-
vantages of using AJVM including: High reusability
of classes

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N° 1 2016

Articles 67

Client and server elements of an Internet appli-
cation usually use the same data structures, simi-
lar validation rules (for input data) as well as some
common elements of business logic. In a traditional
solution many of these common features are imple-
mented twice (often using different implementation
platforms): on each side. It is a developer’s responsi-
bility to guarantee consistency of both parts of the ap-
plication. The use of AJVM enables developers to use
the same Java code at the client’s and server’s side. It
is a huge time-saver and the way to reduce a number
of errors.
Providing lightweight implementation of Java Vir-
tual Machine together with an application

Even though using Java applets meet the previous-
ly mentioned criteria (high reusability of classes), it
is worth mentioning that Flash Player is much lighter
and more popular than Java plugins for web browsers.
AJVM makes it possible to execute Java code by users
who do not intend to install Java Runtime Environ-
ment neither additional plugins to web browsers. End
users do not have to be even aware of JVM running on
their computers. AJVM is extremely lightweight – the
size of compiled AJVM is less than 100kb.
Eliminating limitations of traditional clients

Client applications are usually running in single-
threaded environment and thus use only a single
thread (designed to support user’s interface). Good
examples are JavaScript, HTML5 and Flash. AJVM al-
lows to use (on a client side) additional computation-
al models: multi-threading, generics etc.

Of course, the performance of reference imple-
mentation of AJVM requires ActionScript 3.0 code to
be responsible for such tasks as: UI rendering, mul-
timedia streaming, and CPU intensive computations.

Executed test cases shows clearly that the current
implementation is missing optimization techniques
which speed up bytecode execution, particularly Just
In Time compilation. Consequently, the efficiency of
JVM is lower comparing to traditional, commercial
VMs (represented by HotSpot in test cases executed).
The difference of efficiency ranges from ~35% for
test cases using intensively external resources (less
operations on VM-level comparing to a number of op-
erations on OS-level) to ~12 800% for others. The ex-
ception is some specific situations (described in test
case 5) which reveals dominance of AJVM.

The future work on AJVM includes the extension
of the compliance with the reference specification
of JVM (for instance providing bytecode verification
during class loading).

One should also remember that in order to seri-
ously think about practical application of AJVM it
should be made compliant with Java 7 or at least Java
6 standard.

Another significant work to be done is further de-
velopment of Java Standard Library delivered with
JVM (to provide full compliance with Oracle imple-
mentation or full compliance with GNU Classpath).

Another part of the research will concern increas-
ing the performance. There are many options includ-
ing Just-In-Time compilation. Also, the novel bytecode
execution model opens new possibilities related to

on-the-fly code transformation, code injection during
runtime, and more efficient and precise code profil-
ing.

As it was mentioned a couple of times, AJVM is de-
signed in a modular way so that the level of depen-
dency on external VM (Flash Player) can be reduced
to some extent. For instance, it is possible to imple-
ment own Garbage Collector module and replace the
one provided by Flash container. However, due to
module dependencies, replacing a module may result
in being forced to replace others as well. GC module
mentioned above is a good example. In the current
implementation objects creation and management is
controlled by Flash at all. In order to replace GC both
domains would have to be delivered.

Source code of AJVM can be accessed here:
http://galaxy.uci.agh.edu.pl/~ajanik/AJVM_source_
files.zip

AUTHORS
Arkadiusz Janik* – AGH University of Science and
Technology, Faculty of Computer Science, Electronics
and Telecommunications, Department of Computer
Science, al. Mickiewicza 30, 30-059 Kraków, Poland.
E-mail: arkadiusz.janik@agh.edu.pl

Jakub Krawczyk – AGH University of Science and
Technology, Faculty of Computer Science, Electronics
and Telecommunications, Department of Computer
Science, al. Mickiewicza 30, 30-059 Kraków, Poland.

*Corresponding author

REFERENCES

[1] 	 Lindholm T., Yellin, F., The Java Virtual Machine
Specification, 2nd Edition, Addison-Wesley, 1999.

[2] 	 Gosling J., Joy B., The Java Language Specifica-
tion, Addison-Wesley, 1996.

[3] 	 Chan P., Lee R., The Java Class Libraries: An An-
notated Reference, Addison-Wesley, 1997.

[4] 	 Naughton P., Morrison M., The Java Handbook,
Osborne/McGraw-Hill, 1996.

[5] 	 Venners B., Inside the Java 2 Virtual Machine,
McGraw-Hil, 2000.

[6] 	 Downing T., Meyer J., The Java Virtual Machine,
O’Reilly Media, 1997.

[7] 	 Craig I., Virtual Machines, Springer, 2005.
[8] 	 Stark R., Java and the Java Virtual Machine: Defi-

nition, Verification, Validation, Springer, 2001.
[9] 	 Barrio V., Fernandez A., Study of the techniques

for emulation programming, Universidad Po-
litecnica de Catalunya, 2001.

[10]	 Braunstein, R., ActionScript 3.0 Bible”, Wiley,
2010.

[11] 	ActionScript Virtual Machine 2 (AVM2) Overview,
Adobe Systems Incorporated, 2007.

[12] 	Gassner D., Flash Builder 4 and Flex 4 Bible, Wi-
ley, 2010.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N° 1 2016

Articles68

[13]	 Elst P., Object-Oriented ActionScript 3.0, friend-
sofED, 2007.

[14]	 Adobe Flash Player Technology Breakdown.
	 http://www.adobe.com/products/player_census/

flashplayer/tech_breakdown.html accessed on 1st
Oct 2015.

[15] Simon D., Cifuentes C., The squawk virtual ma-
chine: Java on the bare metal, ACM, 2005.

[16] 	JAmiga VM homepage, 2014.
	 http://jamiga2.blogspot.com/ accessed on 15th

July 2015.
[17] 	JC Virtual Machine homepage, 2013.
	 http://jcvm.sourceforge.net/ accessed on 15th

July 2015.
[18] 	Pickett C., Verbrugge C., Return Value Prediction

in a Java Virtual Machine, VPW2, 2004.
[19] 	Flip8 – CHIP-8 Flash Emulator homepage, 2014.
	 http://sourceforge.net/projects/flip8/accessed

on 21st Sep 2015.
[20] 	GNU Classpath homepage, 2014.
	 http://jcvm.sourceforge.net/ accessed on 21st

Sep 2015.
[21] 	Schoeber, M., “JOP: A Java Optimized Processor

for Embedded Real-Time Systems”, VDM Verlag
Dr. Müller, 2008.

[22] 	FC64 – Flash Commodore 64 Emulator homep-
age, 2014.

	 http://codeazur.com.br/stuff/fc64_final/ac-
cessed on 2nd Apr 2015.

