Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The ecological factor is very important in shaping properties of alloys. It leads to a limitation or elimination, from the surroundings, of harmful elements from the heavy metals group. The so-called eco-brasses group comprises common lead-free brasses containing 10 to 40% of zinc and arsenic brasses of a high dezincification resistance. Among standardized alloys, CW511L alloy ( acc. to EN standard) or MS-60 alloy (acc. to DIN) can be mentioned. Investigations were performed on two different kinds of metal charges: ingots cast by gravity and the ones obtained in the semi-continuous casting technology with using crystallizers. The casting quality was analysed on the basis of the microstructure images and mechanical properties. The investigations also concerned increasing the corrosion resistance of lead-free alloys. This resistance was determined by the dezincification tendency of alloys after the introduction of alloying additions, i.e. aluminium, arsenic and tin. The investigations focused on the fact that not only alloying additions but also the production methods of charge materials are essential for the quality of produced castings. The introduced additions of aluminium and tin in amounts: 0÷1.2 wt% decreased the dezincification tendency, while arsenic, already in the amount of 0.033 wt%, significantly stopped corrosion, limiting the dezincification process of lead-free CuZn37 brass. At higher arsenic contents, corrosion occurs only within the thin surface layer of the casting (20 μ).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
113--118
Opis fizyczny
Bibliogr. 20 poz., fot., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Historical Layers Research Centre, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Historical Layers Research Centre, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Historical Layers Research Centre, Kraków, Poland
Bibliografia
- [1] Rzadkosz, S. (2013). Foundry of copper and copper alloys. Kraków: Akapit. (in Polish).
- [2] Rzadkosz, S., Kranc, M., Garbacz-Klempka, A., Kozana, J. & Piękoś, M. (2015). Refining processes in the copper casting technology. Metalurgija. 54(1), 259-262.
- [3] Rzadkosz, S., Garbacz-Klempka, A., Kozana, J., Piękoś, M. & Kranc, M. (2014). Structure and properties research of casts made with copper alloys matrix. Archives of Metallurgy and Materials. 59(2), 775-778.
- [4] Schultheiss, F., Windmark, Ch., Sjöstrand, S., Rasmusson, M. & Ståhl, J.E. (2018). Machinability and manufacturing cost in low-lead brass. International Journal of Advanced Manufacturing Technology. DOI: 10.1007/s00170-018-1866-4.
- [5] Garbacz-Klempka, A., Kozana, J., Piękoś, M., Papaj, M., Papaj, P. & Perek-Nowak, M. (2018). Influence of modification in centrifugal casting on microstructure and mechanical properties of silicon bronzes. Archives of Foundry Engineering. 18(3), 11-18. DOI: 10.24425/123594.
- [6] Bydałek, A.W., Kwaśniewski, P., Schlafka, P., Wołczyński, W.& Najman K. (2018). Determination of the technological parameters process for continuously cast brass Ingot. Archives of Foundry Engineering. 18(1), 9-14. DOI: 10.24425/118803.
- [7] Romankiewicz, F., Romankiewicz, R., Michalski, M. & Romankiewicz, A. (2006). Intermetallic phase research in lead brass. Polish metallurgy in the years 2002-2006. Wydaw. Naukowe "Akapit", 717-720. (in Polish).
- [8] Rzadkosz, S., Kozana, J., Garbacz-Klempka, A. & Piękoś, M. (2015). Structure analysis and properties of unleaded brasses. Archives of Metallurgy and Materials. 60(1), 323-328. DOI: 10.1515/amm-2015-0053.
- [9] Romankiewicz, F., Romankiewicz, R., Michalski, M. & Romankiewicz, A. (2006). Study of hard inclusions in leaded brass. Archives of Foundry. 6(18) 1/2, 257-260. (in Polish).
- [10] Kozana, J., Rzadkosz, S., Garbacz-Klempka, A., Piękoś, M. & Cieślak, W. (2013). Research into influence of selected alloying elements on the microstructure and selected mechanical and technological properties of brasses. Metallurgy and Foundry Engineering. 39(2), 37-46.
- [11] Rajabi, Z. & Doostmohammadi, H., (2018). Effect of addition of tin on the microstructure and machinability of α–brass. Materials Science and Technology. DOI: 10.1080/02670836.2018.1435484.
- [12] Biernat, S., Bydałek, A.W., Wołczyński, W. & Najman, K. (2017). Analysis of the possibility of calculating the charges on the example of brasses. Archives of Metallurgy and Materials. 62(4), 2165-2170. DOI:10.1515/amm-2017-0319.
- [13] Li, L., Chen, Y.Q., Li, Q. & Huang, G.J. (2012) Study on the microstructures and properties of the lead-free easy-cutting bial-brass. Advanced Materials Research. 463-464, 1057-1061. DOI:10.4028/www.scientific.net/AMR.463-464.1057.
- [14] Orłowicz, A.W., Tupaj, M., Mróz, M., Kupiec, B., Jacek, M. & Radoń, M. (2018). A possibility to improve resistance of cast-iron hydraulic valves to cavitation wear. Archives of Foundry Engineering. 18(4), 31-34.DOI: 10.24425/123628.
- [15] Zivkovic, D., Begovic, E., Kostov, A. & Ekinovic, S. (2012). Advanced trends in design of lead-free alternative for traditional free machining brasses. Journal of Environmental Protection and Ecology. 13(3A), 1914-1920.
- [16] Toulfatzis, A.I., Pantazopoulos, G.A. & Paipetis, A.S. (2016). Microstructure and properties of lead-free brasses using post-processing heat treatment cycles. Materials Science and Technology, 32(17), 1771-1781. DOI: 10.1080/ 02670836.2016.1221493.
- [17] Klocke, F., Nobel, Ch. & Veselovac, D. (2016). Influence of tool coating, tool material, and cutting speed on the machinability of low-leaded brass alloys in turning. Materials and Manufacturing Processes. 31(14), 1895-1903. DOI:10.1080/10426914.2015.1127944.
- [18] Biernat, S. & Bydalek, A.W. (2019). Integrated analytical and measurement system for the evaluation of the properties of cast metals and alloys. Archives of Foundry Engineering. 19(1), 13-18. DOI: 10.24425/afe.2018.125184.
- [19] Kwapisiński, P., Ivanova, A.A., Kania, B. & Wołczyński, W. (2017). Some similarities / differences between steel static and virtual brass static casting. Archives of Foundry Engineering. 17(1), 109-114. DOI: 10.1515/afe-2017-0020.
- [20] Alirezaei, M., Bahonar, S. & Doostmohammadi, H., (2016). Microstructure evolution in cast and equilibrium heat-treated CuZn30-(Si) alloys. International Journal of Cast Metals Research. 29(4). DOI:10.1080/13640461.2015.1126430.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-644476ca-6015-4a49-a41b-84cc7e02d716