PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Insight into the effect of galvanic interactions between sulfide minerals on the floatability and surface characteristics of pyrite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Complex sulfide ores are usually found as a mixture of various sulfide and gangue minerals, and froth flotation is the predominant method for the selective separation of sulfide minerals. Adherence and contact between sulfide minerals are inevitable during froth flotation, and galvanic interactions between sulfide minerals will occur because of differences in rest potentials. However, the effect of these galvanic interactions on the selective flotation of sulfide minerals have been rarely studied. In this work, the effect of the galvanic interaction between pyrite and sphalerite on the flotation behavior and surface characteristics of pyrite was investigated by micro-flotation tests, collector adsorption tests, electrochemical techniques and XPS (X-ray photoelectron spectroscopy) surface analysis. The micro-flotation tests indicated that the floatability of pyrite decreased in the pH range of 4.0 to 9.5 and increased under strongly alkaline pH conditions (pH > 10) due to the galvanic interaction. The collector adsorption results demonstrated that the adsorption capacity of the collector on the pyrite surface was significantly reduced because of the galvanic interaction between pyrite and sphalerite. The electrochemical measurements revealed that the decrease in the oxidation current of xanthates to dixanthogen was responsible for the decreasing adsorption capacity of the collector on the pyrite surface. The XPS results indicated that the formation of the S"O$ "% oxidation product on the pyrite surface decreased at a strongly alkaline pH due to the galvanic interaction. Therefore, pyrite floatability improved at an alkaline pH. These results consistently showed that the galvanic interaction between pyrite and sphalerite had an important influence on the floatability and surface characteristics of pyrite.
Słowa kluczowe
Rocznik
Strony
24--33
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Kunming University, Kunming 650214, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • AGHAZADEH, S., MOUSAVINEZHAD, S. K., GHARABAGHI, M. 2015. Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals. Adv. Colloid Interface Sci. 225, 203-217.
  • AIKAWA, K., ITO, M., SEGAWA, T., JEON, S., PARK, I., TABELIN, C. B., HIROYOSHI, N. 2020. Depression of leadactivated sphalerite by pyrite via galvanic interactions: Implications to the selective flotation of complex sulfide ores. Miner. Eng. 152, 106367.
  • CHANDRA, A. P., PUSKAR, L., SIMPSON, D. J., GERSON, A. R. 2012. Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation. Int. J. Miner. Process. 114-117, 16-26.
  • CHEN, X., SEAMAN, D., PENG, Y., BRADSHAW, D. 2014. Importance of oxidation during regrinding of rougher flotation concentrates with a high content of sulfides. Miner. Eng. 66-68, 165-172.
  • CHOPARD, A., PLANTE, B., BENZAAZOUA, M., BOUZAHZAH, H., MARION, P. 2017. Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides. Chemosphere. 166, 281-291.
  • EJTEMAEI, M. ,NGUYEN, A. V. 2017. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate. Miner. Eng. 100, 223-232.
  • HU, Y., WU, M., LIU, R., SUN, W. 2020. A review on the electrochemistry of galena flotation. Miner. Eng. 150, 106272.
  • HU, Y. H., ZHANG, S. L., QIU, G. Z., MILLER, J. D. 2000. Surface chemistry of activation of lime-depressed pyrite in flotation. Trans. Nonferrous Met. Soc. China. 10, 798-803.
  • HUANG, P., CAO, M., LIU, Q. 2013. Selective depression of pyrite with chitosan in Pb–Fe sulfide flotation. Miner. Eng. 46-47, 45-51.
  • LIU, Q., LI, H., ZHOU, L. 2008. Galvanic interactions between metal sulfide minerals in a flowing system: Implications for mines environmental restoration. Appl. Geochem. 23, 2316-2323.
  • LU, Y. L., TONG, X., XIE, X., YANG, B., HUA, Z. B. 2019. Effect of particle size on the oxidation and flotation behavior of galena particles. Physicochem. Probl. Mineral Pro. 55, 208-216.
  • MOSLEMI, H. ,GHARABAGHI, M. 2017. A review on electrochemical behavior of pyrite in the froth flotation process. J. Ind. Eng. Chem. 47, 1-18.
  • MU, Y., PENG, Y., LAUTEN, R. A. 2016a. The depression of copper-activated pyrite in flotation by biopolymers with different compositions. Miner. Eng. 96-97, 113-122.
  • MU, Y., PENG, Y., LAUTEN, R. A. 2016b. The depression of pyrite in selective flotation by different reagent systems – A Literature review. Miner. Eng. 96-97, 143-156.
  • MU, Y., PENG, Y., LAUTEN, R. A. 2018. The galvanic interaction between chalcopyrite and pyrite in the presence of lignosulfonate-based biopolymers and its effects on flotation performance. Miner. Eng. 122, 91-98.
  • OWUSU, C., BRITO E ABREU, S., SKINNER, W., ADDAI-MENSAH, J., ZANIN, M. 2014. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Miner. Eng. 55, 87-95.
  • OWUSU, C., FORNASIERO, D., ADDAI-MENSAH, J., ZANIN, M. 2015. Influence of pulp aeration on the flotation of chalcopyrite with xanthate in chalcopyrite/pyrite mixtures. Int. J. Miner. Process. 134, 50-57.
  • OZUN, S., VAZIRI HASSAS, B., MILLER, J. D. 2019. Collectorless flotation of oxidized pyrite. Colloid Surf. APhysicochem. Eng. Asp. 561, 349-356.
  • PECINA, E. T., URIBE, A., NAVA, F., FINCH, J. A. 2006. The role of copper and lead in the activation of pyrite in xanthate and non-xanthate systems. Miner. Eng. 19, 172-179.
  • QIN, W.-Q., WANG, X.-J., MA, L.-Y., JIAO, F., LIU, R.-Z., GAO, K. 2015a. Effects of galvanic interaction between galena and pyrite on their flotation in the presence of butyl xanthate. T Trans. Nonferrous Met. Soc. China. 25, 3111-3118.
  • QIN, W., WANG, X., MA, L., JIAO, F., LIU, R., YANG, C., GAO, K. 2015b. Electrochemical characteristics and collectorless flotation behavior of galena: With and without the presence of pyrite. Miner. Eng. 74, 99-104.
  • RAO., S. R. ,FINCH, J. A. 1987. Electrochemcial studies on sulphide minerals with special reference to pyrite-sphalerite.Part ⅠCyclovoltammetry and pulp potential measurements. Can. Metall. Q. 163, 521-529.
  • REIS, A. S., REIS FILHO, A. M., DEMUNER, L. R., BARROZO, M. A. S. 2019. Effect of bubble size on the performance flotation of fine particles of a low-grade Brazilian apatite ore. Powder Technol. 356, 884-891.
  • SANTOS, F. E.-D. L., RIVERA-SANTILLÁN, R. E., TALAVERA-ORTEGA, M., BAUTISTA, F. 2016. Catalytic and galvanic effects of pyrite on ferric leaching of sphalerite. Hydrometallurgy. 163, 167-175.
  • SHEN, P., LIU, D., ZHANG, X., JIA, X., SONG, K., LIU, D. 2019. Effect of (NH4)2SO4 on eliminating the depression of excess sulfide ions in the sulfidization flotation of malachite. Miner. Eng. 137, 43-52.
  • SOMASUNDARAN, P., WANG, D. 2006. Chapter 4 Mineral–flotation reagent equilibria. Pp. 73-141 in Developments in Mineral Processing, vol. 17, ed. D. Wang. Elsevier.
  • SONG, S., LOPEZ-VALDIVIESO, A., REYES-BAHENA, J. L., BERMEJO-PEREZ, H. I., TRASS, O. 2000. Hydrophobic Flocculation of Galena Fines in Aqueous Suspensions. J. Colloid Interface Sci. 227, 272-281.
  • URBANO, G., MELÉNDEZ, A. M., REYES, V. E., VELOZ, M. A., GONZÁLEZ, I. 2007. Galvanic interactions between galena–sphalerite and their reactivity. Int. J. Miner. Process. 82, 148-155.
  • YANG, B., TONG, X., LAN, Z. Y., CUI, Y. Q., XIE, X. 2018a. Influence of the Interaction between Sphalerite and Pyrite on the Copper Activation of Sphalerite. Minerals. 8,
  • YANG, B., XIE, X., TONG, X., LAN, Z. Y., CUI, Y. Q. 2018b. Interaction between sphalerite and pyrite and its effect on surface oxidation of sphalerite. Physicochem. Probl. Mineral Pro. 54, 311-320.
  • ZANIN, M., LAMBERT, H., DU PLESSIS, C. A. 2019. Lime use and functionality in sulphide mineral flotation: A review. Miner. Eng. 143, 105922.
  • ZENG, Y., LIU, J., RU, S.-S., WEN, S.-M., WANG, Y. 2019. DFT study the adsorption of ethyl xanthate on the S-site of Cu-activated sphalerite (1 1 0) surface in the presence of water molecule. Results Phys. 13, 102271.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6443be54-d9d1-4fba-8eaa-93a66f5b661c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.