Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Springs are a vital source of water supply in Quaternary volcanic environments, such as Rinjani Volcano on Lombok Island, and yet little is known about their emergence and recharge areas. Knowledge of spring recharge area can substantially support further spring analysis and management. This study was performed in two spring zones on the southern flank of Rinjani Volcano. It combined the available morphological, lithological, and hydrological datasets to build a conceptual model of the spring recharge areas. According to the analysis results, the conceptual model allowed to describe the flow medium, the aquifer type, and the characteristics of the flow system. The local morphology controlled the direction and gradient of groundwater flow to the springs. The analysis also revealed that the spring water in the study area was meteoric water, which mainly came from rainwater infiltration. Therefore, the boundaries of the spring recharge areas were represented by the morphological divides.
Wydawca
Czasopismo
Rocznik
Tom
Strony
177--190
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
- Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
autor
- Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
autor
- Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
autor
- Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
Bibliografia
- 1. Agarwal A, Bhatnagar N, Neman R, Agrawal N (2012) Rainfall dependence of springs in the midwestern Himalayan Hills of Uttarakhand. Mt Res Dev 32(4):446–455. https://doi.org/10.1659/mrd-journal-d-12-00054.1
- 2. Andi Manga S, Staminate S, Hermanto B, Satyagraha B, Amin T (1994) Geological map lombok sheet, West Nusa Tenggara. Geological Research and Development Center, Bandung
- 3. Ansari M, Deodar A, Kumar U, Khatti V (2015) Water quality of few springs in outer Himalayas: a study on the groundwater–bedrock interactions and hydrochemical evolution. Groundw Sustain Dev 1:59–67. https://doi.org/10.1016/j.gsd.2016.01.002
- 4. APHA (2005) Standard method for examination of water and wastewater, 21st edn. APHA, Washington, DC
- 5. As-syakur A (2009) Evaluasi zona agroklimat dari klasifikasi Schmidt–Ferguson menggunakan aplikasi Sistem Informasi Geogafis [The evaluation of Schmidt–Ferguson classification on Agroclimate data at Lombok Island]. Jurnal Pijar MIPA III 1:17–22
- 6. Blake S, Henry T, Murray J, Flood R, Muller M, Jones A, Rath V (2016) Compositional multivariate statistical analysis of thermal groundwater provenance: a hydrogeochemical case study from Ireland. Appl Geochem 75:171–188. https://doi.org/10.1016/j.apgeochem.2016.05.008
- 7. Conrad OB, Gerlitz L, Wehberg J, Wichmann V, Boehner J (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007. https://doi.org/10.5194/gmd-8-1991-2015
- 8. Drever J (1982) The geochemistry of natural waters. Prentice-Hall, Upper Saddle River, NJ
- 9. Eaton A, Clesceri L, Greenber A, Franson M (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, American Water Works Association, Water Environment Federation, Baltimore
- 10. Fiorillo F (2014) The recession of spring hydrographs, focused on karst aquifers. Water Resour Manag 28(7):1781–1805. https://doi.org/10.1007/s11269-014-0597-z
- 11. Florinsky IV (2000) Relationships between topographically expressed zones of flow accumulation and sites of fault intersection: analysis by means of digital terrain modelling. Environ Model Softw 15:87–100. https://doi.org/10.1016/S1364-8152(99)00025-0
- 12. Freeze R, Cherry J (1979) Groundwater. Prentice-Hall Inc., Englewood Cliffs
- 13. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. International contributions to hydrogeology, vol 2. Taylor & Francis, London
- 14. Grabs T, Seibert J, Bishop K, Laudon H (2009) Modelling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model. J Hydrol 373:15–23. https://doi.org/10.1016/j.jhydrol.2009.03.031
- 15. Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge
- 16. Herrera G, Custadio E, Chong G, Lamban L, Riquelme R, Wilke H et al (2016) Groundwater flow in a closed basin wuth a saline shallow lake in a volcanic area: Laguna Tuyajto, Northern Chilean Altiplano of the Andes. Sci Total Environ 541:303–318. https://doi.org/10.1016/j.scitoenv.2015.09.060CrossRefGoogle Scholar
- 17. Irawan D (2009) Model Hidrogeologi Berdasarkan Analisis Perubahan Sifat Fisika- Kimia Airtanah pada Sistem Akifer Endapan Gunungapi, Studi Kasus: Zona Mataair Gunung Ciremai, Jawa Barat. Ph.D. thesis, Bandung Institute of Technology, Bandung
- 18. Irawan D, Puradimaja D (2002) Geological mapping and groundwater physical-chemical properties characterization: an approach to spring recharge area conservation. In: Proceedings of the international conference on urban hydrology for the 21th century. Kuala Lumpur
- 19. Irawan D, Puradimaja D (2006) The hydrogeology of the Volcanic Spring Belt, East Slope of Gunung Ciremai, West Java, Indonesia. Intenational Association of Engineering Geologists Congress, Oct 2006
- 20. Irawan D, Puradimaja D, Notosiswoyo S, Soemintadiredja P (2009) Hydrogeochemistry of volcanic hydrogeology based on cluster analysis of Mount Ciremai, West Java, Indonesia. J Hydrol 376:221–234. https://doi.org/10.1016/j.jhydrol.2009.07.033
- 21. Kim T, Moon D, Park W, Park K, Ko G (2007) Classification of springs of Jeju Island using cluster analysis of annual fluctuations in discharge variables: investigation of the regional groundwater system. Geosci J 11(4):397–413. https://doi.org/10.1007/BF02857055
- 22. Kresic N (2008) Groundwater resources: sustainability, management, and restoration. McGraw Hill, New York
- 23. Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs: engineering, theory, management and sustainability. Elsevier, Oxford. https://doi.org/10.1073/pnas.0703993104
- 24. Lagarde L, Boston P, Campbell A, Hose L, Axen G, Stafford K (2014) Hydrogeology of northern Sierra de Chiapas, Mexico: a conceptual model based on a geochemical characterization of sulfide-rich karst brackish springs. Hydrogeol J 22:1447–1467. https://doi.org/10.1007/s10040-014-1135-z
- 25. Lee J, Lee K (2000) Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system. J Hydrol 229:190–201. https://doi.org/10.1016/S0022-1694(00)00158-X
- 26. Lin P, Tsai L, Wang C, Chang K, Sheng Y, Chu I et al (2017) Groundwater origins and recharge in a well field near Chien-Shih, Shinchu, Taiwan. Sustain Water Resour Manag 3:93–107. https://doi.org/10.1007/s40899-017-0119-2
- 27. Loke M (2004) Geoelectrical imaging 2-D & 3-D. Geotomo Software, Malaysia
- 28. Madl-Szonyi J, Toth A (2015) Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region. Hydrogeol J 23:1359–1380. https://doi.org/10.1007/s10040-015-1274-x
- 29. Manga M (2001) Using springs to study groundwater flow and active geologic processes. Annu Rev Earth Planet Sci 29:201–228. https://doi.org/10.1146/annurev.earth.29.1.201
- 30. Matthess G (1982) Properties of groundwater. McGraw-Hill, New York
- 31. Moore I, Gessler G, Peterson G (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452. https://doi.org/10.2136/sssaj1993.03615995005700020026x
- 32. Naves A, Samper J, Dafonte J, Pisani B, Fernández J, García A et al. (2017) Conceptual Hydrogeological model of groundwater flow through fracture schist for the design of water supply in rural areas of Abegondo (Galicia, Spain). In: International Conference on Groundwater in Fractured Rocks. Chaves, Portugal
- 33. Nguyen T, Kawamura A, Tong T, Nakagawa N, Amaguchi H, Gilbuena R Jr (2015) Clustering spatio–seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta, Vietnam. J Hydrol 522:661–673. https://doi.org/10.1016/j.jhydrol.2015.01.023
- 34. Oh H, Kim Y, Choi J, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172. https://doi.org/10.1016/j.jhydrol.2010.12.027
- 35. Ozdemir A (2011) GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logisticregression methods and their comparison. J Hydrol 411:290–308. https://doi.org/10.1016/j.jhydrol.2011.10.010
- 36. Pacheo F, Alencoao A (2005) Role of fractures in weathering of solid rocks: narrowing the gap between laboratory and field weathering. J Hydrol 316:248–265. https://doi.org/10.1016/j.jhydrol.2005.05.003
- 37. Panno S, Hackley K, Hwang H, Greenberg S, Krapac I, Landsberger S et al (2006) Characterization and identification of Na–Cl sources in groundwater. Ground Water 44(2):176–180. https://doi.org/10.1111/j.1745-6584.2005.00127.x
- 38. Parisi S, Paternoster M, Kohfahl C, Pekdeger A, Meyer H, Hubberten H et al (2011) Groundwater recharge areas of a volcanic aquifer system inferred from hydraulic, hydrogeochemical and stable isotope data: Mount Vulture, southern Italy. Hydrogeol J 19(1):133–153. https://doi.org/10.1007/s10040-010-0619-8
- 39. Petitta M, Mastrorillo L, Preziosi E, Banzato F, Barberio M, Billi A et al (2018) Water-table and discharge changes associated with the 2016–2017 seismic sequence in central Italy: hydrogeological data and a conceptual model for fractured carbonate aquifers. Hydrogeol J 26(4):1009–1026. https://doi.org/10.1007/s10040-017-1717-7
- 40. Piper A (1953) A graphic procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25(6):914–928
- 41. Pourali SH, Arrowsmith C, Chrisman N, Matkan AA, Mitchell D (2016) Topography wetness index application in flood-risk-based land use planning. Appl Spat Anal Policy 9(1):39–54. https://doi.org/10.1007/s12061-014-9130-2
- 42. Pourtaghi Z, Pourghasemi H (2014) GIS-based groundwater spring potential assessment and mappingin the Birjand Township, southern Khorasan Province, Iran. Hydrogeol J 22(3):643–662. https://doi.org/10.1007/s10040-013-1089-6
- 43. Rodriguez K, Swanson S, Mc Mahon A (2017) Conceptual models for surface water and groundwater interactions at pond and plug restored meadows. J Soil Water Conserv 72(4):382–395. https://doi.org/10.2489/jswc.72.4.382
- 44. Sarma V, Swamy A (1981) Groundwater quality in Visakhapatnam basin, India. Water Air Soil Pollut 16:317–329. https://doi.org/10.1007/BF01046912
- 45. Sen Z (2014) Practical and applied geohydrology. Elsevier, Amsterdam
- 46. Shahid S, Nath S, Roy J (2000) Groundwater potential modelling in a soft rock area using a GIS. Int J Remote Sens 21(9):1919–1924. https://doi.org/10.1080/014311600209823
- 47. Tagil S, Jenness J (2008) GIS-based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. J Appl Sci 8(6):910–921. https://doi.org/10.3923/jas.2008.910.921
- 48. Villalobos-Vega R, Salazar A, Miralles-wilhelm F, Haridasan M, Franco A, Goldstein G (2014) Do groundwater dynamicc drive spatial patterns of tree density and diversity in neotropical savannas? J Veg Sci 25:1465–1473. https://doi.org/10.1111/jvs.12194
- 49. Ward RC, Robinson M (2000) Principles of hydrology, 4th edn. Mcgraw Hill, London
- 50. White W (2003) Conceptual models for karstic aquifers. Speleogenesis Evol Karst Aquifers 1(1):1–6
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64331aef-a5e1-4832-8c5a-d5b85374a67d