PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mining interesting rules and patterns for salt sensitivity of blood pressure

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Given a medical data set containing genetic description of sodium-sensitive and nonsensitive patients, we examine it using several techniques: induction of decision rules, naive Bayes classifier, voting perceptron classifier, decision trees, SVM classifier. We specifically focus on induction of decision rules and so called Pareto-optimal rules, which are of large interpretative value for physicians. We find statistically relevant combinations of attributes, which affect the sodium sensitivity.
Rocznik
Strony
149--157
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
autor
  • Szczecin University of Technology, Faculty of Computer Science and Information Technology
autor
  • Szczecin University of Technology, Faculty of Computer Science and Information Technology
  • Pomeranian Medical University
  • Pomeranian Medical University
autor
  • Pomeranian Medical University
  • National Institute of Telecommunications
Bibliografia
  • [1] Ciechanowicz A., et al. Lack of association between gly460trp polymorphism of alpha-adducin gene and salt sensitivity of blood pressure in polish hypertensives. Kidney Blood Press Res. 24, 2001 pp. 201–206.
  • [2] Sharma A. M. Salt sensitivity as a phenotype for genetic studies of human hypertension. Nephrol Dial Transplant 11, 1996, pp. 927–959.
  • [3] Rodriguez-Iturbe B., Vaziri N. D. Salt-sensitive hypertension – update on novel findings. Nephrol Dial Transplant 22, 2007, pp. 992–995.
  • [4] Agrawal R., Imieliński T., Swami A. Mining association rules between sets of items in large databases. In: SIGMOD '93: Proceedings of the 1993 ACM SIGMOD international conference on Management of data, New York, NY, USA, ACM, 1993, pp. 207–216.
  • [5] Smyth P., Goodman R. M. An information theoretic approach to rule induction from databases. IEEE Transactions on Knowledge and Data Engineering 4, 1992, pp. 301–316.
  • [6] Gray R. M. Entropy and Information Theory. Springer Verlag, New York, USA Information Systems Laboratory, Electrical Engineering Department, Stanford University, 1990.
  • [7] Chaitin G. J. Algorithmic Information Theory. Cambridge University Press, Cambridge, 1997.
  • [8] Quinlan R. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
  • [9] Roberto J., Bayardo J., Agrawal R. Mining the most interesting rules. In: KDD '99: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, USA, ACM, 1999, pp. 145–154.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-642d260f-4703-4c5e-99e4-8b4b4b82f59e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.