Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Szacowanie wilgotności gleby za pomocą wskaźników teledetekcyjnych w zakresie spektralnym 0,4-2,5 mm
Języki publikacji
Abstrakty
Soil moisture content (SMC) is an important element of the environment, influencing water availability for plants and atmospheric parameters, and its monitoring is important for predicting floods or droughts and for weather and climate modeling. Optical methods for measuring soil moisture use spectral reflection analysis in the 350-2500 nm range. Remote sensing is considered to be an effective tool for monitoring soil parameters over large areas and to be more cost effective than in situ measurements. The aim of this study was to assess the SMC of bare soil on the basis of hyperspectral data from the ASD FieldSpec 4 Hi-Res field spectrometer by determining remote sensing indices and visualization based on multispectral data obtained from UAVs. Remote sensing measurements were validated on the basis of field humidity measurements with the HH2 Moisture Meter and ML3 ThetaProbe Soil Moisture Sensor. A strong correlation between terrestrial and remote sensing data was observed for 7 out of 11 selected indexes and the determination coefficient R2 values ranged from 67%-87%. The best results were obtained for the NINSON index, with determination coefficient values of 87%, NSMI index (83.5%) and NINSOL (81.7%). We conclude that both hyperspectral and multispectral remote sensing data of bare soil moisture are valuable, providing good temporal and spatial resolution of soil moisture distribution in local areas, which is important for monitoring and forecasting local changes in climate.
Zawartość wody w glebie (SMC) jest ważnym elementem środowiska wpływającym na dostępność wody dla roślin, parametry atmosferyczne, a jej monitorowanie jest istotne w prognostyce powodzi lub susz a także modelowaniu pogody i klimatu. Optyczne metody pomiaru wilgotności gleby wykorzystują analizę odbicia spektralnego w zakresie od 350 do 2500 nm. Uważa się, że teledetekcja jest skutecznym narzędziem monitorowania parametrów gleby na dużych obszarach i jest bardziej opłacalna w porównaniu z pomiarami in situ. Celem pracy jest ocena SMC gleby niepokrytej/skąpo pokrytej roślinnością na podstawie danych hiperspektralnych ze spektrometru polowego ASD FieldSpec 4 Hi-Res poprzez wyznaczenie wskaźników teledetekcji i wizualizacji na podstawie danych wielospektralnych uzyskanych z UAV. Pomiary teledetekcyjne zostały zweryfikowane na podstawie pomiarów wilgotności w terenie za pomocą miernika wilgotności HH2 z sondą Thete Probe ML3. Silną korelację między danymi naziemnymi i teledetekcyjnymi zaobserwowano dla 7 z 11 wybranych wskaźników, a wartości współczynników determinacji R2 wahały się w granicach 67%-87%. Najlepsze wyniki uzyskano dla indeksu NINSON o wartościach współczynników determinacji 87% a także dla indeksu NSMI 83,5% i NINSOL 81,7%. Dane z teledetekcji hiper- i multispektralnej dotyczące wilgotności niepokrytej/skąpo pokrytej roślinnością gleby mają wielką wartość, ponieważ zapewniają dobrą czasową i przestrzenną rozdzielczość rozkładu wilgotności gleby na obszarach lokalnych co jest istotne dla monitoringu i prognozowania lokalnych zmian klimatu.
Czasopismo
Rocznik
Tom
Strony
1--11
Opis fizyczny
Bibliogr. 37 poz., fot., rys., tab., wykr.
Twórcy
autor
- Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
autor
- Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
autor
- Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
autor
- Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
Bibliografia
- [1] Yue, J., Tian, J., Tian, Q., Xu, K. and Xu, N., 2019, “Development of soil moisture indices from differences in water absorption between shortwave-infrared bands,” ISPRS J. Photogramm. Remote Sens., 154, 216-230. DOI: 10.1016/j.isprsjprs.2019.06.012.
- [2] Fabre, S., Briottet, X. and Lesaignoux, A., 2015, “Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4-2.5 μm domain,” Sensors (Switzerland), 15(2), 3262-3281. DOI: 10.3390/s150203262.
- [3] Gholami Bidkhani, N. O. and Mobasheri, M. R., 2018, “Influence of soil texture on the estimation of bare soil moisture content using MODIS images,” Eur. J. Remote Sens., 51(1), 911-920. DOI:10.1080/22797254.2018.1514986.
- [4] Susha Lekshmi, S. U., Singh, D. N. and Shojaei Baghini, M., 2014, “A critical review of soil moisture measurement,” Measurement: Journal of the International Measurement Confederation, (54), 92-105. DOI: 10.1016/j.measurement.2014.04.007.
- [5] Wagner, W., Lemoine, G. and Rott, H., 1999, “A method for estimating soil moisture from ERS Scatterometer and soil data,” Remote Sens. Environ., 70(2), 191-207. DOI: 10.1016/S0034-4257(99)00036-X.
- [6] Zhang, D. and Zhou, G., 2016, “Estimation of soil moisture from optical and thermal remote sensing: A review,” Sensors (Switzerland), 16(8). MDPI AG. DOI: 10.3390/s16081308.
- [7] Zhang, C., Mishra, D. R. and Pennings, S. C., 2019 “Mapping salt marsh soil properties using imaging spectroscopy,” ISPRS J. Photogramm. Remote Sens., 148, 221-234. DOI: 10.1016/j.isprsjprs.2019.01.006.
- [8] Oltra-Carrió, R., Baup, F., Fabre, S., Fieuzal, R. and Briottet, X., 2015, “Improvement of Soil Moisture Retrieval from Hyperspectral VNIR-SWIR Data Using Clay Content Information: From Laboratory to Field Experiments,” Remote Sens., 7(3), 3184-3205. DOI: 10.3390/rs70303184.
- [9] Gillies, R. R., Carlson, T. N., Cui, J., Kustas, W. P. and Humes, K. S., 1997, “A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (ndvi) and surface e,” Int. J. Remote Sens., 18(15), 3145-3166. DOI: 10.1080/014311697217026.
- [10] Shi, J., Wang, J., Hsu, A. Y., O’Neill, P. E. and Engman, E. T., 1997, “Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data,” IEEE Trans. Geosci. Remote Sens., 35(5), 1254-1266. DOI: 10.1109/36.628792.
- [11] Ghulam, A., Qin, Q., Teyip, T. and Li, Z. I., 2007, “Modified perpendicular drought index (MPDI): a real-time drought monitoring method,” ISPRS J. Photogramm. Remote Sens., 62(2), 150-164. DOI: 10.1016/j.isprsjprs.2007.03.002.
- [12] Casamitjana, M., Torres-Madroñero, M. C., Bernal-Riobo, J. and Varga, D., 2020, “Soil Moisture Analysis by Means of Multispectral Images According to Land Use and Spatial Resolution on Andosols in the Colombian Andes,” Appl. Sci., 10(16), 5540-5555. DOI: 10.3390/app10165540.
- [13] Wang, J., Ling, z., Wang, Y. and Zeng, H., 2016, “Improving spatial representation of soil moisture by integration of microwave observations and the temperature-vegetation-drought index derived from MODIS products,” ISPRS J. Photogramm. Remote Sens., 113, 144-154. DOI: 10.1016/j.isprsjprs.2016.01.009.
- [14] Bablet, A. et al., 2018, “MARMIT: A multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400–2500 nm),” Remote Sens. Environ., 217, 1-17. DOI: 10.1016/j.rse.2018.07.031.
- [15] Mohamed, E. S., Saleh, A. M., Belal, A. B. and Gad, A. A., 2018, “Application of near-infrared reflectance for quantitative assessment of soil properties,” Egyptian Journal of Remote Sensing and Space Science, 21(1), 1-14. DOI: 10.1016/j.ejrs.2017.02.001.
- [16] Bowers, S. A. and Smith, S. J., 1972, “Spectrophotometric Determination of Soil Water Content,” Soil Sci. Soc. Am. J., 36(6), pp. 978-980. DOI: 10.2136/sssaj1972.03615995003600060045x.
- [17] Whalley, W. R., Leeds-Harrison, P. B. and Bowman, G. E., 1991, “Estimation of soil moisture status using near infrared reflectance,” Hydrol. Process., 5(3), 321-327. DOI: 10.1002/hyp.3360050312.
- [18] Haubrock, S. N., Chabrillat, S., Lemmnitz, C. and Kaufmann, H., 2008, “Surface soil moisture quantification models from reflectance data under field conditions,” Int. J. Remote Sens., 29(1), 3-29. DOI: 10.1080/01431160701294695.
- [19] Zhang, N., Hong, Y., Qin, Q. and Liu, L., 2013, “VSDI: A visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing,” Int. J. Remote Sens., 34(13), 4585-4609. DOI: 10.1080/01431161.2013.779046.
- [20] Knowles, O. and Dawson A., 2018, “Current soil sampling methods - a review”, in: Farm environmental planning - Science, policy and practice. (L.D. Currie and C. L. Christensen, Eds), Occasional Report No. 31, Fertilizer and Lime Research Centre, Massey University, Palmerston North, New zealand.
- [21] Scrimgeour, C., 2008, “Soil Sampling and Methods of Analysis”, in: Experimental Agriculture, M. R. Carter and E. G. Gregorich, Eds, Boca Raton, Fl, USA: CRC Press, 44(3). DOI: 10.1017/S0014479708006546.
- [22] Chen, J. M., 1996, “Evaluation of vegetation indices and a modified simple ratio for boreal applications,” Can. J. Remote Sens., 22(3), 229-242. DOI: 10.1080/07038992.1996.10855178.
- [23] Gomez, C. and Lagacherie, P., 2016, “Mapping of Primary Soil Properties Using Optical Visible and Near Infrared (Vis-NIR) Remote Sensing”, in “Land Surface Remote Sensing in Agriculture and Forest”, Nicolas baghdadi, Mehrez zribi, Eds, Elsevier, 1-35.
- [24] Ansari, S., Padmanabhi, A. D. and Deshmukh, D. R. R., 2017, “Spectral Estimation of Soil Moisture Content using Semi Empirical Soil Model in the 0.4-2.5 µm Domain,” Int. J. Comput. Appl. Technol. Res., 6(07), 338-343. DOI: 10.7753/ijcatr0607.1013.
- [25] Li, C. et al., 2016, “Hyperspectral parameters and prediction model of soil moisture in coastal saline,” Chinese J. Appl. Ecol., 27(2), 525-531. DOI: 10.13287/j.1001-9332.201602.019.
- [26] Huuskonen, J. and Oksanen, T., 2018, “Soil sampling with drones and augmented reality in precision agriculture,” Comput. Electron. Agric., 154, 25-35. DOI: 10.1016/j.compag.2018.08.039.
- [27] Mazzoleni, M., Paron, P., Reali, A., Juizo, D., Manane, J. and Brandimarte, L., 2020, “Testing UAV-derived topography for hydraulic modelling in a tropical environment,” Nat. Hazards, 103(1), 139-163. DOI: 10.1007/s11069-020-03963-4.
- [28] Kacprzak, M. and Rotchimmel, K., 2016, “Creating photogrammetry products with photos acquired by array of non-metric cameras,” Trans. Inst. Aviat., 243(2), 120-129, (in Polish). DOI: 10.5604/05096669.1205266.
- [29] Gitelson, A. A. and Merzlyak, M. N., 1998, “Remote sensing of chlorophyll concentration in higher plant leaves,” Adv. Sp. Res., 22(5), 689-692. DOI: 10.1016/S0273-1177(97)01133-2.
- [30] Lu, F., Sun, Y., and Hou, F., 2020, “Using UAV visible images to estimate the soil moisture of steppe,” Water (Switzerland), 12(9), 2334-2351. DOI: 10.3390/W12092334.
- [31] Jasiewicz, J., Zwoliński, Zb., Mitasova, H., Hengl, T. (Eds.), 2015, Geomorphometry for Geosciences, Bogucki Wydawnictwo Naukowe, Adam Mickiewicz University in Poznań - Institute of Geoecology and Geoinformation.
- [32] Buters, T., Belton, D. and Cross, A., 2019, “Seed and Seedling Detection Using Unmanned Aerial Vehicles and Automated Image Classification in the Monitoring of Ecological Recovery,” Drones, 3(3), 53-69. DOI: 10.3390/drones3030053.
- [33] Wójtowicz, A. Wójtowicz, M. and Piekarczyk, J., 2016, “Application of remote sensing methods in agriculture,” CBCS, 11(1), 31-50.
- [34] Al-Gaadi, K. A. et al., 2016, “Prediction of potato crop yield using precision agriculture techniques,” PLoS One, 11(9). DOI: 10.1371/journal.pone.0162219.
- [35] Kotlarz, J., Nasiłowska, S., Rotchimmel, K., Kubiak, K. and Kacprzak, M., 2018, “Species Diversity of Oak Stands and Its Significance for Drought Resistance,” Forests, 9(3), 126-148. DOI: 10.3390/f9030126.
- [36] Chmielewski, S., Bochniak, A., Natapov, A. and Wezyk, P., 2020, “Introducing GEOBIA to landscape imageability assessment: A multi-temporal case study of the nature reserve ‘Kozki’, Poland,” Remote Sens., 12(17), 2792-2817. DOI: 10.3390/RS12172792.
- [37] Jeihouni, M., Alavipanah, S. K., Toomanian, A. and Jafarzadeh, A. A., 2020, “Digital mapping of soil moisture retention properties using solely satellite-based data and data mining techniques,” J. Hydrol., 585, Article ID 124786. DOI: 10.1016/j.jhydrol.2020.124786.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-642a55d7-3015-4ed0-a685-fa645fc83ae5