Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Two (so-called C;D) classes of permutation-based bent Boolean functions were introduced by Carlet [4] two decades ago, but without specifying some explicit construction methods for their construction (apart from the subclass D0). In this article, we look in more detail at the C class, and derive some existence and nonexistence results concerning the bent functions in the C class for many of the known classes of permutations over F2n. Most importantly, the existence results induce generic methods of constructing bent functions in class C which possibly do not belong to the completed Maiorana-McFarland class. The question whether the specific permutations and related subspaces we identify in this article indeed give bent functions outside the completed Maiorana-McFarland class remains open.
Wydawca
Czasopismo
Rocznik
Tom
Strony
271--292
Opis fizyczny
Bibliogr. 20 poz., tab.
Twórcy
autor
- Department of Mathematics, Indian Institute of Technology, Roorkee, INDIA
autor
- Department of Computer Science and Engineering, Indian Institute of Technology, Roorkee, INDIA
autor
- Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943–5216, USA
autor
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, (Famnit), SLOVENIA
Bibliografia
- [1] Berger T, Canteaut A, Charpin P, and Laigle-Chapuy Y. Almost perfect nonlinear functions over F2n, IEEE Trans. Inform. Theory 52 (2006), 4160-4170. doi:10.1109/TIT.2006.880036.
- [2] Blokhuis A, Coulter RS, Henderson M, and O’Keefe CM. Permutations amongst the Dembowski-Ostrom polynomials, in: 1999 Finite Fields and Applications, pp. 37-42. Springer, Berlin (2001). doi:10.1007/978-3-642-56755-1_4.
- [3] Bracken C, Byrne E, Markin N, and McGuire G. Determining the nonlinearity of a new family of APN functions, AAECC 2007, LNCS 4851, pp. 72-79, 2007. doi:10.1007/978-3-540-77224-8_11.
- [4] Carlet C. Two New Classes of Bent Functions, in: Eurocrypt ’93, LNCS, Vol. 765 (1994), pp. 77-101.
- [5] Carlet C. Boolean Functions for Cryptography and Error Correcting Codes, In: Y. Crama, P. Hammer (eds.), Boolean Methods and Models, Cambridge Univ. Press, Cambridge, pp. 257-397, 2010. Available from: http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html.
- [6] Carlet C. Vectorial Boolean functions for cryptography, In: Y. Crama, P. Hammer (eds.), Boolean Methods and Models, Cambridge Univ. Press, Cambridge, pp. 398-469, 2010. Available from http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html.
- [7] Cusick TW, Stӑnicӑ P. Cryptographic Boolean functions and applications, Elsevier-Academic Press, 2009. ISBN: 978-0-12-374890-4.
- [8] Dillon JF. Elementary Hadamard Difference Sets, PhD Thesis, University of Maryland, 1974.
- [9] Dillon JF. Elementary Hadamard Difference Sets, in: proceedings of 6th S. E. Conference of Combinatorics, Graph Theory, and Computing, Utility Mathematics, Winnipeg, (1975) pp. 237-249.
- [10] Dobbertin H. Construction of bent functions and balanced Boolean functions with high nonlinearity, Fast Software Encryption, Leuven 1994 (1995), LNCS 1008, Springer-Verlag, pp. 61-74.
- [11] Dobbertin H. Almost Perfect Nonlinear Power Functions on GF(2n): The Welch Case, IEEE Trans. Inf. Theory 45:4 (1999), 1271-1275. doi:10.1109/18.761283.
- [12] Hou X-d. Determination of a type of permutation trinomial over finite fields I, II, manuscripts, 2013, 2014: Available from: http://arxiv.org/abs/1309.3530 and http://arxiv.org/abs/1404.1822.
- [13] Laigle-Chapuy Y. A note on a class of quadratic permutations over F2n, AECC (2007), LNCS 4851, pp. 130-137. doi:10.1007/978-3-540-77224-8_17.
- [14] Lam TY, Leung KH. On vanishing sums of mth roots of unity in finite fields, Finite Fields Appl. 2 (1996), 422-438. doi:10.1006/ffta.1996.0025.
- [15] Lam TY, Leung KH. On vanishing sums of roots of unity, J. Algebra 224 (2000), 91-109. doi:10. 1006/jabr.1999.8089.
- [16] Lidl R, and Niederreiter H. Finite Fields, Encyclopedia Math. Appl., vol. 20, Addison-Wesley, Reading, 1983. ISBN-13: 978-0521065672, 10: 0521065674.
- [17] McFarland RL. A family of noncyclic difference sets, J. Combinatorial Theory, Ser. A 15 (1973), 1-10. doi:10.1016/0097-3165(73)90031-9.
- [18] Payne S. Complete determination of translation ovoids in finite Desarguian planes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 51 (1971), 328-331.
- [19] Rothaus OS. On Bent Functions, J. Combinatorial Theory, Ser. A 20 (1976), 300-305. doi:10.1016/0097-3165(76)90024-8.
- [20] Sivek G. On vanishing sums of distinct roots of unity, Integers 10 (2010), 365-368. doi:10.1515/integ.2010.031.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-641da94c-a7b5-4b8a-8f4c-824ee0d61b56