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Abstract

There are many design problems need to be optimized in various fields of engineering,
and most of them belong to the NP-hard problem. The meta-heuristic algorithm is one
kind of optimization method and provides an effective way to solve the NP-hard problem.
Salp swarm algorithm (SSA) is a nature-inspired algorithm that mimics and mathemat-
ically models the behavior of slap swarm in nature. However, similar to most of the
meta-heuristic algorithms, the traditional SSA has some shortcomings, such as entrap-
ment in local optima. In this paper, the three main strategies are adopted to strengthen the
basic SSA, including chaos theory, sine-cosine mechanism and the principle of quantum
computation. Therefore, the SSA variant is proposed in this research, namely SCQ-SSA.
The representative benchmark functions are employed to test the performances of the al-
gorithms. The SCQ-SSA are compared with the seven algorithms in high-dimensional
functions (1000 dimensions), seven SSA variants and six advanced variants on bench-
mark functions, the experiment reveals that the SCQ-SSA enhances resulting precision
and alleviates local optimal problems. Besides, the SCQ-SSA is applied to resolve three
classical engineering problems: tubular column design problem, tension/compression
spring design problem and pressure vessel design problem. The design results indicate
that these engineering problems are optimized with high accuracy and superiority by the
improved SSA. The source code is available in the URL: https://github.com/ye-zero/SCQ-
SSA/tree/main/SCQ-SSA.
Keywords: Salp swarm algorithm, meta-heuristic algorithm, chaos theory, sine-cosine
mechanism, quantum computation, optimization design of engineering
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1 Introduction

Optimization is to find the best solution from
the feasible solution set of complex problems.
There are a lot of optimization problems in our daily
life and industrial production, such as bin pack-
ing problems [1] and path planning problems [2]
in Cargo transportation, the fixed-outline floorplan-
ning [3] and routing [4] in the integrated circuit, the
optimal reactive power dispatch [5] in power sys-
tem, the maximum power point trackers [6] for so-
lar photovoltaic system, the training optimization
of deep convolutional neural network [7], etc. If
the objective function of the problem is relatively
uncomplicated, the derivative method can be used
to solve it. However, the NP-hard problems usu-
ally contain many parameters and constraints, or
the optimization problems are dynamic and multi-
objective [8] as well. The traditional methods op-
timize problems with the low rate of convergence
and poor accuracy, and can not achieve the desired
results.

As an artificial intelligence method for intelli-
gent computing, metaheuristic algorithms are sur-
prisingly very popular in many fields of engineer-
ing. This popularity is due to the following main
features: local optimum suppression, gradient-free
search, elasticity and simplicity, the metaheuristic
algorithm assumes that the optimization problem is
a black box. In other words, meta-heuristic algo-
rithms consider and resolve optimization problems
by the inputs, outputs and constraints.

In recent years, several novel algorithms are
proposed like Orca Predation Algorithm (OPA,
[9]), White Shark Optimizer (WSO, [10]), Artificial
Rabbits Optimization (ARO, [11]) as well. Meta-
heuristic algorithms have been applied widely as
a superior tool for solving the optimization prob-
lems in science and industry. Particle swarm opti-
mization is designed for multi-station assembly se-
quence planning [12]. Knowledge mapping opti-
mization method based on the improved ant colony
algorithm is proposed in [13]. The optimization
objective function of knowledge mapping is con-
structed and solved by the improved ant colony
algorithm. A network security posture prediction
model [14] based on the support vector machine
optimized by the improved artificial bee colony al-
gorithm (I-ABC) and uses the I-ABC algorithm for
SVM.

Salp Swarm Algorithm (SSA) [64] is proposed
by Seyedali Mirjalili [15]. as one of the meta-
heuristic algorithms in 2017. The algorithm is a
swarm-inspired algorithm that mimics and mathe-
matically models the behavior of a salp swarm in
the ocean. As soon as the algorithm is proposed, it
arouses a wide interest among researchers. There
are many research papers about the improvement
and application of SSA. A brief review of these
variants is presented as follows. An efficient adap-
tive salp swarm algorithm based on two-class fuzzy
entropy for multi-stage threshold image segmenta-
tion is proposed in [16]. The enhanced salp swarm
algorithm for multimodal optimization and fuzzy-
based grid frequency controller design is presented
in [17]. The salp swarm algorithm is applied to de-
sign and analyze text document clustering in [18].
An improved salp swarm algorithm based on the en-
ergy audit to optimize the parameters of urban rail
substations is presented in [19].

Our main contributions can be summarized as
follows:

– We propose the efficient variant SCQ-SSA
based on three strategies; chaos theory, quantum
computation and sine-cosine mechanism to en-
hance the basic SSA.

– A number of experiments are carried out to ver-
ify the performance of the SCQ-SSA on bench-
mark functions. The SCQ-SSA is compared
with seven algorithms in high-dimensional func-
tions (1000 dimensions), seven SSA variants
and six advanced variants, the experimental re-
sults show that the SCQ-SSA has fine and effec-
tive convergence accuracy.

– The SCQ-SSA is employed to optimize the de-
sign of three engineering problems. The weight
or cost of three engineering problems is de-
signed with the relative minimum, and the ex-
perimental data reveals that the SCQ-SSA is su-
perior to other methods.

The remaining portion of this paper is arranged
as follows. Section 2 introduces the optimization
goal and presents a brief description of basic SSA.
The modified SSA variant and three strategies for
improvement are discussed in Section 3. The simu-
lation results of performance verification are pro-
vided in Section 4. Three classical engineering
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problems are optimized by the SCQ-SSA in Sec-
tion 5. Finally, the conclusion and future work are
enumerated in Section 6.

2 Optimization goal and method

2.1 Optimization goal

The optimization goal of this paper is the non-
linear and constraint problem with a single objec-
tive function in engineering. The mathematical
model of the engineering problem is to obtain the
maximum or minimum with constraints as Eq. (1)
and Eq. (2).

Max or Min F(X),X ∈ Sn (1)

Sub ject to




Gi(X)≤ 0, i = 1,2, ...,g,
Hi(X)≥ 0, i = 1,2, ...,h,
Ki(X) = 0, i = 1,2, ...,k,
xi ∈ [lbi,ubi], i = 1,2, ...,n.

(2)

Where F(X) is the objective function of obtain-
ing the optimal value, X = [x1,x2, ...,xn] is the vec-
tor of the solution and belongs to the collection S;
and S is the n-dimensional search space that satis-
fies the lower bound lb and the upper bound ub;
g and h are the numbers of nonlinear constraints;
k represents the number of linear constraints; n is
the number of variables. Generally speaking, the
constrained problems are transformed into uncon-
strained problems. The most frequently used tech-
nique is the penalty function. The mathematical de-
scription is as Eq. (3).

F(X ,P) = F(X)+P
g

∑
i=1

max(Gi(x),0)

−P
h

∑
i=1

min(Hi(x),0)+P
k

∑
i=1

|Ki(x)|
(3)

Where F(X ,P) is the penalty function; P repre-
sents penalty factor.

2.2 Salp swarm algorithm

The slap is a marine invertebrate with a trans-
parent and bucket-shaped body. They resemble jel-
lyfish in shape and movement, move by sucking
the surrounding water and squirting it as a reverse
propulsion force. Salp swarm algorithm is based on
the behavior of the slap when it searches the food,

the same phenomenon is mimicked and modeled in
the algorithm to get the optimum solution for the
optimization problem. Unlike many creatures in na-
ture, the slaps are not distributed in groups, but in
the form of a chain. They often form the chains of
the slaps.

The mathematical model of SSA divides the
chain into leader and followers. The one is called
the leader in front of the salp chain, which can be
considered as an individual with relatively better
fitness value, that is, a relatively better solution to
the objective function. whereas the remaining are
named the followers. The leader guides the group to
move and search for a better solution in the search
space; the followers follow each other, indirectly
accept the influence of the leader. The leader in-
fluences the position update of the next slap. In this
way, the leader’s influence on followers decreases
step by step, and the slap chain preserves its diver-
sity.

Assuming that the optimization problem is m-
dimensional and the population size of the slap is
n, the search space is an n*m-dimensional solution
domain. The m-dimensional upper boundary of the
search space is ubm = [ub1

m,ub2
m, ...,ubn

m], while the
m-dimensional lower boundary of search space is
lbm = [lb1

m, lb
2
m, ..., lb

n
m], there are the optimal solu-

tion Fm = [F1
m,F

2
m, ...,F

n
m] somewhere in the solution

space. The default initialization of SSA is random
as Eq. (4)

Xm
n = rand(n,m)∗ (ub− lb)+ lb (4)

In the algorithm, the leader is responsible for
searching food, and the position of the leader is up-
dated by Eq. (5).

x1
j =

{
Fj + c1 ((ub j − lb j)c2 + lb j) ,c3 ≤ 0.5
Fj − c1 ((ub j − lb j)c2 + lb j) ,c3 > 0.5

(5)

Where x1
j represents the position of the leader

in the j-th dimension, Fj shows the position of the
optimal solution (food source) in the j-th dimen-
sion. There are three parameters that affect the al-
gorithm, they are c1,c2,c3; where c2 and c3 are ran-
dom numbers between [0,1], c2 determines the next
step size and c3 ensures the randomness of the di-
rection change of leader. The major coefficient is
c1, it can make the balance between exploration and
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exploitation capabilities; c1 is calculated as Eq. (6).

c1 = 2e−(
4l
L )

2

(6)

It can be seen that c1 decreases as the number of
iterations increases, which is reasonable. At the be-
ginning of the iteration, the step size of the search
space needs to be larger, so that SSA is easier to
jump out of the local optimum. At the end of the
iteration, the step size is reduced for convergence. l
is the current iteration and L is the maximum num-
ber of iterations. Followers don’t need to change
their direction randomly, they just need to follow
the movement of the last slap. The motion of the
followers conforms to Newton’s laws of motion as
Eq. (7).

s = v0t +
1
2

at2 (7)

Where s is the distance of the follower; v0 is the
initial velocity of the follower, v0 = 0; a is the cur-
rent acceleration of the follower; time t is the differ-
ence of the number of iterations, t = 1; Eq. (7) satis-
fys two equations: a= (v−v0)/t and v= (x−x0)/t,
so s = (x−x0)/2 = (xi

j −xi−1
j )/2; and Eq. (7) is de-

rived as Eq. (8).

xi
j = xi−1

j + s =
1
2

(
xi

j + xi−1
j

)
(8)

Where i ≥ 2 and xi
j shows the position of i-th

follower salp in j-th dimension.

3 The modified salp swarm algo-
rithm

3.1 Initialization with chaos

The population size is fixed in SSA, there are
a limited number of agents to perform the search
process in the large and unknown solution space.
Hence, the searchability of each agent needs to be
fully exploited. The initialization of the population
is crucial to the search for the optimal. If the ran-
dom method is used to generate the initial positions
of agents, the positions of agents are unevenly dis-
tributed or some agents are concentrated in some
blocks. However, the default initialization of SSA
is done in a random manner. The random initial-
ization can easily produce the poor solution and fall
into the local optimum, so the improved method of
initializing the population is necessary.

Over the years, Chaos has been applied as a
very effective mathematical tool to improve the
search performance of metaheuristic algorithms.
Chaos state manifests as a dynamic and unstable,
stochastic-like behavior in the periodic motion of
nonlinear systems. It is characterized by stochastic-
ity, regularity, ergodicity and boundedness. Chaos
is commonly used in meta-heuristic algorithms in
two ways. One is used to update the location of
the population, which makes the next update of the
population more random, and traverses the entire
search space as much as possible. The ergodicity
of chaos can improve the global search ability of
the algorithm.such as chaotic differential evolution
algorithm [20] and chaotic grasshopper optimiza-
tion algorithm [21] as well. The other is used for
initialization, where the position of the generated
population spreads across the search space, such as
the chaotic artificial bee colony algorithm [22] and
chaotic grey wolf optimization [23] and so on. The
modified salp swarm algorithm initializes the popu-
lation using circle maps as Eq. (9).

Cn+1 = mod (Cn +b−
( a

2π

)
sin(2πCn) ,1) (9)

Where a and b are the control factor of chaos.
When a= 0.5 and b= 0.2, the state of chaos is com-
plete and the variable value is between 0 and 1. The
random initialization is changed to Eq. (10).

Xm
n =C(n,m)∗ (ub− lb)+ lb (10)

Where C is the chaotic matrix; ub is the upper
boundary of the search space and lb is the lower
boundary of the search space. Fig. 1 shows the
perturbation plot of Circle Chaos for 200 iterations
starting from the middle value of 0.5. The curve
of the solution is distributed between the range of
0 and 1 with regularity. The ergodicity of the Cir-
cle chaotic map makes it possible to explore other
potential solutions in the space, it enhances the di-
versity of the population and the ability to jump out
of the local optimum.
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Figure 1. The Circle Map

3.2 Sine-cosine mechanism

The original SSA is similar to most of the
meta-heuristic algorithms. There are two possi-
ble problems: slow convergence speed and entrap-
ment in local optima. The sine-cosine mechanism is
adopted to escape from the local optimum. The idea
of the sine-cosine mechanism is derived from Sine-
cosine Algorithm (SCA). The position is updated
according to sine or cosine function with a certain
probability. The four parameters of SCA enhance
the randomized behavior of SSA and promotes lo-
cal optima avoidance. The sine-cosine mechanism
is employed as the local search scheme to disturb
the position of SSA. The cyclic mode of the sine
and cosine functions allows one solution to be repo-
sitioned around the other, it guarantees exploitation
of SSA. The range of the sine and cosine functions
is modified to improve the exploration of SSA. The
update of the position is as Eq. (11).

xt+1
j =





xt
j + r1 × sin(r2)×

∣∣∣r3 ×Fj − xt
j

∣∣∣ ,r4 ≤ 0.5

xt
j + r1 × cos(r2)×

∣∣∣r3 ×Fj − xt
j

∣∣∣ ,r4 > 0.5
(11)

Where xt
j is the position of the current solution

at t-th iteration in j-th dimension, r1 is a major pa-
rameter to affect the global exploration and local
development of the algorithm, r1 is updated by Eq.
(12); r2 is a random number between 0 and 2π; r3
is a uniformly distributed random numbers in the
range of [0, 2] and r4 is in [0,1]; r is the threshold,
r = 0.5; Fj is the position of the best solution.

r1 = a− t
a
T

(12)

Where t is the current iteration, T is the max-
imum number of iterations, and a is a constant,
a = 2.

3.3 Quantum computation

Quantum computation is first proposed in the
early 1980s. Since then, many researchers have
been trying to introduce the concept of quantum
computation into traditional methods to improve
the performance of computing. Of course, a lot
of meta-heuristic algorithms are developed and hy-
bridized with quantum computation to strengthen
their advantages and mitigate their weaknesses. A
number of quantum-inspired algorithms are pro-
posed, such as adaptive quantum behavior particle
swarm optimization [24], quantum grey wolf opti-
mizer [25] and quantum-inspired firefly algorithm
[26] as well.

Each dimension of an agent is named a qubit
in quantum computation, and there are two basic
states: |0⟩ and |1⟩. At any time, the state of a qubit
can be considered as a linear combination of two
basic states. In general, it is called the superim-
posed state as Eq. (13).

|φ⟩= α |0⟩+β |1⟩ (13)

Where α and β are the complex numbers, they
are called probability amplitudes. In other words,
the probability of the state |0⟩ is |α|2 and the prob-
ability of the state |1⟩ is |β|2. The relationship be-
tween the two states satisfies Eq. (14).

|α|2 + |β|2 = 1 (14)

If only the real number is considered, the rela-
tionship makes us think of the sine and cosine func-
tions. Let α = cosθ and β = sinθ, where θ is the
phase. Then the state of the qubit can be expressed
by probability amplitude or phase as Eq. (15).

|φ⟩= [α,β]T = [cosθ,sinθ]T (15)

An m-dimensional agent has m qubits, the state
A of an agent can also be represented by probability
amplitude or phase as Eq. (16).

A =

[
α1 ... αm

β1 ... βm

]
=

[
cosθ1 ... cosθm

sinθ1 ... sinθm

]

(16)
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From Eq. (16) we can know that the possibil-
ity of the agent state is 2m in quantum computation.
There is only one definite state for an agent in tra-
ditional computing. In contrast, quantum agents do
not increase the numbers or dimensions of the pop-
ulation, but potentially enrich the diversity of the
population. And the position update of quantum
agents is implemented to jump out from the local
optimum and improve the solution superiority ac-
cording to the quantum revolving gate as Eq. (17).
[

cosθt+1
i j

sinθt+1
i j

]
=

[
cos∆θt+1

i j − sin∆θt+1
i j

sin∆θt+1
i j cos∆θt+1

i j

][
cosθt

i j
sinθt

i j

]

(17)

Where θt
i j is the phase of the j-th dimension of

the i-th agent in the t-th iteration; ∆θt+1
i j represents

the phase shift of the j-th dimension of the i-th agent
in the t + 1 iteration. The individual state of agent
needs a mapping from quantum state to the solution
space as Eq. (18).

xi j =

{
cosθ2

i j (ub j − lb j)+ lb j,q1 ≤ 0.5
sinθ2

i j (ub j − lb j)+ lb j,q1 > 0.5

}
(18)

Where xi j is the postion of the j-th dimension of
the i-th agent; q1 is a random number between 0 and
1 and Eq. (18) shows the variability and diversity of
the positon of search agents.

3.4 The operation of SCQ-SSA

Let’s analyze the pseudocode of SCQ-SSA. In
the preparation phase, the parameters of the input
are denoted and created. The circle chaotic se-
quences are generated by Eq. (9), which are em-
ployed to initialize the slap chains according to Eq.
(10). Besides, the initial solution needs to satisfy
the upper bound and the upper bound. The fitness
value is obtained by the objective function. The re-
lated parameters of the leading salp are gotten by
Eq. (6) and Eq. (12). The leader updates the posi-
tion using Eq. (5) and Eq. (11), then the quantum
state of agents is converted to the solution space ac-
cording to Eq. (18). The position of the followers
is calculated by Eq. (8) and the best solution is up-
dated in each iteration. If the current solution is su-
perior to the previous solution, the better solution is
saved. Afterward, the stop condition for the recur-
sion is checked. At last, the optimum value of the
objective function is obtained.

Algorithm 1. Pseudocode of the SCQ-SSA 
algorithm.

1: Input:The size of population (N), the maximum
number of iteration (tmax), the upper bound (ub)
and the lower bound (lb) of the search space, the
dimension (D) of the objective function.

2: Output:The optimal solution (F).
3: for i = 1 → N do
4: for j = 1 → D do
5: The population is initialized by circle

maps.
6: end for
7: end for
8: while t < tmax do
9: Check the upper bound ub and lower bound

lb of the search space.
10: The fitness value of each search agent is cal-

culated by the objective function.
11: Update c1 using Eq. (6).
12: if (i == 1) then
13: Initialize the related parameters of sine-

cosine mechanism.
14: Update r1 using Eq. (12).
15: Update the position of the leader by Eq.

(5) and Eq. (11).
16: Convert the quantum state of agents to

the solution space by Eq. (18).
17: end if
18: for i = 2 → N do
19: Update the position of the followers by

Eq. (8).
20: i = i+1.
21: end for
22: if (the fitness value gets better) then
23: Update the fitness value and save the bet-

ter value.
24: end if
25: t = t +1.
26: end while
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From Eq. (16) we can know that the possibil-
ity of the agent state is 2m in quantum computation.
There is only one definite state for an agent in tra-
ditional computing. In contrast, quantum agents do
not increase the numbers or dimensions of the pop-
ulation, but potentially enrich the diversity of the
population. And the position update of quantum
agents is implemented to jump out from the local
optimum and improve the solution superiority ac-
cording to the quantum revolving gate as Eq. (17).
[

cosθt+1
i j

sinθt+1
i j

]
=

[
cos∆θt+1

i j − sin∆θt+1
i j

sin∆θt+1
i j cos∆θt+1

i j

][
cosθt

i j
sinθt

i j

]

(17)

Where θt
i j is the phase of the j-th dimension of

the i-th agent in the t-th iteration; ∆θt+1
i j represents

the phase shift of the j-th dimension of the i-th agent
in the t + 1 iteration. The individual state of agent
needs a mapping from quantum state to the solution
space as Eq. (18).

xi j =

{
cosθ2

i j (ub j − lb j)+ lb j,q1 ≤ 0.5
sinθ2

i j (ub j − lb j)+ lb j,q1 > 0.5

}
(18)

Where xi j is the postion of the j-th dimension of
the i-th agent; q1 is a random number between 0 and
1 and Eq. (18) shows the variability and diversity of
the positon of search agents.

3.4 The operation of SCQ-SSA

Let’s analyze the pseudocode of SCQ-SSA. In
the preparation phase, the parameters of the input
are denoted and created. The circle chaotic se-
quences are generated by Eq. (9), which are em-
ployed to initialize the slap chains according to Eq.
(10). Besides, the initial solution needs to satisfy
the upper bound and the upper bound. The fitness
value is obtained by the objective function. The re-
lated parameters of the leading salp are gotten by
Eq. (6) and Eq. (12). The leader updates the posi-
tion using Eq. (5) and Eq. (11), then the quantum
state of agents is converted to the solution space ac-
cording to Eq. (18). The position of the followers
is calculated by Eq. (8) and the best solution is up-
dated in each iteration. If the current solution is su-
perior to the previous solution, the better solution is
saved. Afterward, the stop condition for the recur-
sion is checked. At last, the optimum value of the
objective function is obtained.

A NOVEL VARIANT OF THE SALP SWARM ALGORITHM FOR . . .

4 Performance assessment of the
SCQ-SSA

The SCQ-SSA discussed in the preceding sec-
tions are tested on the representative benchmark
functions in this section. The performance of SCQ-
SSA is evaluated in comparison with other algo-
rithms. All the experimental algorithms are imple-
mented on a personal computer that has the follow-
ing specifications: operation system is Windows 10
Pro with a 64-bit; a memory (RAM) of 4 GB; pro-
cessor type is Intel-Core-i5 with 3.20 GHz; devel-
opment tools and version is Matlab-R2010a.

4.1 Benchmark functions

In this section, unimodal benchmark functions
( f1- f7) and multimodal benchmark functions ( f8-
f13) are used to test the performance of the algo-
rithms. The mathematical definition and properties
of the benchmark functions are presented in Table 1.
Where the properties of benchmark functions con-
tain Unimodal and Multimodal. Opt is defined as
the optimal value of the function. D is the dimen-
sions of the search space.

4.2 Evaluation indexes

The performance evaluation indexes are as fol-
lows:

– mean value is the average value obtained after n
runs, denoted as Eq. (19).

Mean =
x1 + x2 + · · ·+ xn

n
=

∑n
i=1 xi

n
(19)

– Standard deviation represents the degree of dis-
persion among the individuals in the solution set.
The formula is Eq. (20).

Std =

√
1

n−1 ∑n
i=1 (xi −Mean)2 (20)

– Rank is to sort the algorithm performance ac-
cording to the mean and standard deviation. The
order of magnitude E is considered as the small-
est unit. The average and overall rank are listed
at the bottom of the table.

– ε is the level of precision of the objective func-
tion. In addition, if the mean value of the

function significantly outperforms the precision
level, ’+’ is labeled in the corresponding algo-
rithms; else if the mean value is significantly less
than the precision level, ’-’ is labeled; if mean is
not much different from the precision level, ’=’
is labeled.

4.3 Comparison with the other algorithms
in high-dimensional functions

To verify the effectiveness of SCQ-SSA in high-
dimensional search space (1000 dimensions), the
mean and standard deviation values are obtained by
SCQ-SSA and other severn well-known algorithms:
Gravitational search algorithm (GSA, [27]) Grey
wolf optimizer (GWO, [28]), Cuckoo search (CS,
[29]), Whale optimization algorithm (WOA, [30]),
Sine cosine algorithm (SCA, [31]), Moth-Flame op-
timization (MFO, [32]), Arithmetic optimization al-
gorithm (AOA, [33]). In this experiment, when the
dimension is 1000, the maximum number of iter-
ations is set to 1000. The population size of each
function is 30. Each case runs 30 times indepen-
dently.

According to the data in Table 2. First of all,
the performance of eight algorithms is analyzed
by the mean value; SCQ-SSA significantly out-
performs other seven algorithms on most functions
( f3, f4, f5, f6, f7, f9, f10, f11, f13) and even achieves
the optimal value 0 on two multimodal functions
( f9 and f11). Then WOA also performs well on
eight functions and covers to the optimal value 0 on
f11, the other six algorithms obtain the feasible so-
lution. From the mean value, we can know the con-
vergence precision and exploration ability of SCQ-
SSA is better than other algorithms.

Next, the standard deviation are used to evaluate
the ability of the algorithm, and two additional met-
rics (ε and Rank) are calculated to directly evaluate
the performance. we calculate the number of statis-
tics for the three labels:+/=/-. The labels of GWO,
CS, SCA, MFO and AOA are 13/0/0, it means that
SCQ-SSA is obviously superior to the other five
algorithms, followed by GSA (12/0/1) and WOA
(9/1/3). Then the average and overall rank of the
eight algorithms are discussed. In summary, SCQ-
SSA receives the first rank, WOA, AOA, GWO,
GSA, CS, SCA, MFO rank second to eighth respec-
tively in terms of mean value and standard devia-
tion. It can be seen that the stability and reliabil-
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Table 1. Benchmark functions used in experiments.

Benchmark functions Properties Solution space Opt

f1(x) =
D
∑

i=1
x2

i Unimodal [−100,100]D 0

f2(x) =
D
∑

i=1
|xi|+

D
∏
i=1

|xi| Unimodal [−10,10]D 0

f3(x) =
D
∑

i=1
(

i
∑
j=1

x j)
2 Unimodal [−100,100]D 0

f4(x) = max{|xi|,1 ≤ i ≤ D} Unimodal [−100,100]D 0

f5(x) =
D−1
∑

i=1
[100(x2

i − xi+1)
2 +(xi −1)2] Unimodal [−50,50]D 0

f6(x) = ∑D
i=1 (⌊xi +0.5⌋)2 Unimodal [−100,100]D 0

f7(x) =
D
∑

i=1
ix4

i + random[0,1] Unimodal [−1.28,1.28]D 0

f8(x) = ∑n
i=1−xi sin

(√
|xi|

)
Multimodal [−500,500]D -418.9829*D

f9 (x) =
n
∑

i=1
(xi

2 −10cos(2πxi)+10) Multimodal [−5.12,5.12]D 0

f10(x) =−20exp

(
−0.2

√
1
D

D
∑

i=1
x2

i

)
− exp

(
1
D

D
∑

i=1
cos(2πxi)

)
+20+ e Multimodal [−32,32]D 0

f11 (x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+1 Multimodal [−600,600]D 0

f12(x) = π
D{10sin2(πy1)+

D−1
∑

i=1
(yi −1)2[1+10sin2(πyi+1)]

+(yn −1)2}+
D
∑

i=1
u(xi,10,100,4) Munimodal [−50,50]D 0

u(xi,a,k,m) =





k(xi −a)m, xi > a
0, −a ≤ xi ≤ a
k(−xi −a)m, x <−a

f13 (x) = 0.1{sin2(3πx1)+
D
∑

i=1
(xi −1)2[1+ sin2(3πxi +1)]

+(xn −1)2[1+ sin2(2πxn)]}+
D
∑

i=1
u(xi,5,100,4) Munimodal [−50,50]D 0
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Table 1. Benchmark functions used in experiments.

Benchmark functions Properties Solution space Opt

f1(x) =
D
∑

i=1
x2

i Unimodal [−100,100]D 0

f2(x) =
D
∑

i=1
|xi|+

D
∏
i=1

|xi| Unimodal [−10,10]D 0

f3(x) =
D
∑

i=1
(

i
∑
j=1

x j)
2 Unimodal [−100,100]D 0

f4(x) = max{|xi|,1 ≤ i ≤ D} Unimodal [−100,100]D 0

f5(x) =
D−1
∑

i=1
[100(x2

i − xi+1)
2 +(xi −1)2] Unimodal [−50,50]D 0

f6(x) = ∑D
i=1 (⌊xi +0.5⌋)2 Unimodal [−100,100]D 0

f7(x) =
D
∑

i=1
ix4

i + random[0,1] Unimodal [−1.28,1.28]D 0

f8(x) = ∑n
i=1−xi sin

(√
|xi|

)
Multimodal [−500,500]D -418.9829*D

f9 (x) =
n
∑

i=1
(xi

2 −10cos(2πxi)+10) Multimodal [−5.12,5.12]D 0

f10(x) =−20exp

(
−0.2

√
1
D

D
∑

i=1
x2

i

)
− exp

(
1
D

D
∑

i=1
cos(2πxi)

)
+20+ e Multimodal [−32,32]D 0

f11 (x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+1 Multimodal [−600,600]D 0

f12(x) = π
D{10sin2(πy1)+

D−1
∑

i=1
(yi −1)2[1+10sin2(πyi+1)]

+(yn −1)2}+
D
∑

i=1
u(xi,10,100,4) Munimodal [−50,50]D 0

u(xi,a,k,m) =





k(xi −a)m, xi > a
0, −a ≤ xi ≤ a
k(−xi −a)m, x <−a

f13 (x) = 0.1{sin2(3πx1)+
D
∑

i=1
(xi −1)2[1+ sin2(3πxi +1)]

+(xn −1)2[1+ sin2(2πxn)]}+
D
∑

i=1
u(xi,5,100,4) Munimodal [−50,50]D 0
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Table 2. Comparison between SCQ-SSA and other algorithms in high-dimensional functions.

No. Index GSA GWO CS WOA SCA MFO AOA SCQ-SSA

f1

Mean 5.19E+02 8.72E−09 1.48E+05 3.25E−142 4.05E+05 2.49E+06 1.65E+00 1.70E−104
Std 1.77E+02 3.33E−09 1.20E+04 1.03E−141 1.12E+05 4.52E+04 7.17E−02 7.70E−104
ε + + + − + + +

Rank 5 3 6 1 7 8 4 2

f2

Mean 6.63E+00 2.32E+204 INF 2.30E−100 INF INF 2.10E+01 2.14E−41
Std 1.92E+00 INF INF 5.85E−100 INF INF 7.46E−01 3.05E−41
ε + + + − + + +

Rank 3 5 7 1 7 7 4 2

f3

Mean 9.55E+03 8.50E+05 5.03E+06 1.42E+08 2.44E+07 1.40E+07 1.41E+02 1.00E−102
Std 2.07E+03 2.68E+05 1.16E+06 1.10E+08 4.86E+06 2.09E+06 6.78E+01 2.60E−102
ε + + + + + + +

Rank 3 4 5 8 7 6 2 1

f4

Mean 1.54E+01 7.68E+01 3.91E+01 7.45E+01 9.96E+01 9.95E+01 2.11E−01 1.87E−53
Std 1.26E+00 5.39E+00 2.03E+00 2.58E+01 9.34E−02 1.40E−01 1.13E−02 1.89E−53
ε + + + + + + +

Rank 5 7 6 8 3 4 2 1

f5

Mean 1.98E+04 9.97E+02 4.09E+07 9.93E+02 2.94E+09 1.09E+10 9.99E+02 9.98E+02
Std 1.28E+04 2.25E−01 6.83E+06 5.99E−01 9.85E+08 3.70E+08 1.34E−01 2.40E−02
ε + + + + + + +

Rank 5 3 6 4 7 8 2 1

f6

Mean 1.85E+03 2.09E+02 1.45E+05 4.46E+01 3.65E+05 2.47E+06 2.42E+02 2.50E+01
Std 6.47E+02 2.04E+00 1.31E+04 6.50E+00 1.61E+05 5.36E+04 1.96E+00 0
ε + + + + + + +

Rank 5 3 6 2 7 8 4 1

f7

Mean 2.15E+00 2.21E−02 3.45E+02 1.20E−03 4.28E+04 1.78E+05 6.30E−05 2.89E−05
Std 6.17E−01 5.71E−03 3.48E+01 8.11E−04 9.44E+03 7.35E+03 4.09E−05 2.83E−05
ε + + + + + + +

Rank 5 4 6 3 7 8 2 1

f8

Mean −8.88E+02 −9.78E+04 −3.89E+04 −3.77E+05 −2.27E+04 −1.01E+05 −3.51E+04 −1.95E+04
Std 2.84E+02 7.18E+03 1.45E+03 5.63E+04 9.49E+02 6.69E+03 2.52E+03 2.76E+02
ε − + + + + + +

Rank 1 6 4 8 3 7 5 2

f9

Mean 1.38E+02 1.35E+01 7.41E+03 3.64E−13 1.72E+03 1.47E+04 5.12E−05 0
Std 1.59E+01 1.40E+01 1.71E+02 1.15E−12 9.30E+02 1.17E+02 7.03E−06 0
ε + + + + + + +

Rank 5 4 7 2 6 8 3 1

f10

Mean 3.01E+00 2.84E−06 1.31E+01 3.38E−15 1.60E+01 2.02E+01 9.16E−03 8.88E−16
Std 5.81E−01 5.16E−07 3.34E−01 2.40E−15 5.23E+00 2.42E−01 2.16E−04 0
ε + + + + + + +

Rank 5 3 6 2 8 7 4 1

f11

Mean 9.50E+01 2.87E−03 9.35E+02 0 2.83E+03 1.56E+04 6.70E+03 0
Std 1.38E+01 6.05E−03 7.47E+01 0 9.28E+02 2.98E+02 7.33E+02 0
ε + + + = + + +

Rank 4 3 5 1.5 6 8 7 1.5

f12

Mean 5.35E+00 8.58E−01 1.20E+06 5.70E−02 1.00E+10 2.68E+10 1.10E+00 1.19E−01
Std 1.57E+00 2.30E−02 5.01E+05 2.63E−02 1.84E+09 1.12E+09 8.14E−03 6.78E−16
ε + + + − + + +

Rank 5 3 6 1 7 8 4 2

f13

Mean 1.28E+02 6.37E+00 9.98E+02 2.07E+00 3.03E+08 2.38E+08 1.00E+02 2.97E+00
Std 2.08E+01 4.77E−01 8.30E+02 6.40E−01 1.54E+08 2.15E+08 3.99E−02 5.39E−02
ε + + + + + + +

Rank 5 3 6 2 8 7 4 1

Rank
ε 12/0/1 13/0/0 13/0/0 9/1/3 13/0/0 13/0/0 13/0/0 +/= /−

Average 4.30 3.92 5.84 3.34 6.38 7.23 3.61 1.34
Overall 5 4 6 2 7 8 3 1
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Table 3. Comparison between SCQ-SSA and SSA variants on benchmark functions.

No. Index SSA GSSA CSSA LSSA WASSA CASSA ESSA SCQ-SSA

f1

Mean 6.01E−09 3.25E−109 1.27E−84 1.21E−56 4.18E−103 1.86E−192 0 0
Std 1.31E−09 1.20E−108 3.14E−84 3.86E−56 2.33E−102 0 0 0
ε + + + + + + =

Rank 8 4 6 7 5 3 1.5 1.5

f2

Mean 1.30E−01 4.08E−54 1.22E−42 3.04E−29 1.89E−53 5.61E−96 0 0
Std 2.73E−01 2.05E−53 3.44E−42 8.89E−29 3.44E−53 2.76E−97 0 0
ε + + + + + + =

Rank 8 4 6 7 5 3 1.5 1.5

f3

Mean 9.33E−04 3.88E−106 8.04E−83 3.37E−55 1.22E−103 3.42E−19 0 0
Std 2.01E−03 2.11E−105 4.36E−82 1.10E−54 5.93E−103 0 0 0
ε + + + + + + =

Rank 8 3 5 6 4 7 1.5 1.5

f4

Mean 2.83E−01 7.76E−56 6.56E−42 1.54E−28 1.98E−53 5.52E−97 0 0
Std 3.52E−01 2.46E−55 2.51E−41 7.90E−28 7.39E−53 8.05E−98 0 0
ε + + + + + + =

Rank 8 4 6 7 5 3 1.5 1.5

f5

Mean 4.41E+01 2.90E+01 2.90E+01 2.90E+01 2.68E+01 2.78E+01 2.75E+01 2.57E+01
Std 3.96E+01 2.28E−02 3.25E−02 2.44E−02 1.39E−01 8.87E−02 1.51E−01 1.01E−02
ε + + + + + + +

Rank 8 2 4 3 6 5 7 1

f6

Mean 6.19E−09 9.66E−01 9.14E−01 9.38E−01 8.43E−09 4.11E−07 6.15E−09 5.18E−09
Std 1.34E−09 5.77E−01 4.96E−01 6.20E−01 1.41E−09 1.05E−07 9.52E−10 1.05E−10
ε + + + + + + +

Rank 3 8 6 7 4 5 2 1

f7

Mean 1.83E−02 4.16E−04 5.02E−04 1.10E−03 9.57E−03 1.41E−05 1.14E−05 2.55E−06
Std 6.60E−03 3.69E−04 4.75E−04 9.85E−04 1.13E−02 1.15E−05 1.05E−05 1.92E−06
ε + + + + + + +

Rank 8 4 5 6 7 3 2 1

f8

Mean −2.79E+03 −7.46E+03 −7.59E+03 −7.54E+03 −5.55E+02 −2.83E+03 −2.92E+03 −2.56E+03
Std 3.32E+02 8.53E+02 8.17E+02 7.50E+02 5.06E+02 3.31E+02 2.88E+02 4.19E+02
ε + + + + − + +

Rank 3 6 8 7 1 4 5 2

f9

Mean 1.12E+01 0 0 0 0 0 0 0
Std 6.67E+00 0 0 0 0 0 0 0
ε + = = = = = =

Rank 2 1 1 1 1 1 1 1

f10

Mean 2.00E+01 8.88E−16 8.88E−16 8.88E−16 2.00E+01 2.00E+01 2.00E+01 8.88E−16
Std 5.84E−04 0 0 0 6.05E−14 9.64E−05 6.39E−04 0
ε + = = = = = = =

Rank 4 1 1 1 2 3 5 1

f11

Mean 2.15E−01 0 0 0 0 0 0 0
Std 9.05E−02 0 0 0 0 0 0 0
ε + = = = = = =

Rank 2 1 1 1 1 1 1 1

f12

Mean 2.46E−01 2.34E−02 2.64E−02 5.46E−02 5.78E−12 5.12E−10 3.07E−12 1.66E−02
Std 5.96E−01 1.56E−02 2.62E−02 6.32E−02 2.73E−12 3.81E−10 1.21E−12 8.99E−16
ε + + + + − − −

Rank 8 5 6 7 2 3 1 4

f13

Mean 8.24E−04 2.43E+00 2.14E+00 2.62E+00 2.15E−03 1.92E−03 5.49E−04 2.70E+00
Std 2.89E−03 1.16E+00 1.33E+00 9.68E−01 5.43E−03 4.17E−03 2.39E−03 6.76E−02
ε − + + + − − −

Rank 2 8 7 6 4 3 1 5
ε 12/0/1 10/3/0 10/3/0 10/3/0 7/3/3 8/3/2 4/7/2 +/= /−

Rank Average 5.53 3.92 4.76 5.07 3.61 3.38 2.38 1.76
Overall 8 5 6 7 4 3 2 1



141Fuyun Jia, Sheng Luo, Guan Yin, Yin Ye

Table 3. Comparison between SCQ-SSA and SSA variants on benchmark functions.

No. Index SSA GSSA CSSA LSSA WASSA CASSA ESSA SCQ-SSA

f1

Mean 6.01E−09 3.25E−109 1.27E−84 1.21E−56 4.18E−103 1.86E−192 0 0
Std 1.31E−09 1.20E−108 3.14E−84 3.86E−56 2.33E−102 0 0 0
ε + + + + + + =

Rank 8 4 6 7 5 3 1.5 1.5

f2

Mean 1.30E−01 4.08E−54 1.22E−42 3.04E−29 1.89E−53 5.61E−96 0 0
Std 2.73E−01 2.05E−53 3.44E−42 8.89E−29 3.44E−53 2.76E−97 0 0
ε + + + + + + =

Rank 8 4 6 7 5 3 1.5 1.5

f3

Mean 9.33E−04 3.88E−106 8.04E−83 3.37E−55 1.22E−103 3.42E−19 0 0
Std 2.01E−03 2.11E−105 4.36E−82 1.10E−54 5.93E−103 0 0 0
ε + + + + + + =

Rank 8 3 5 6 4 7 1.5 1.5

f4

Mean 2.83E−01 7.76E−56 6.56E−42 1.54E−28 1.98E−53 5.52E−97 0 0
Std 3.52E−01 2.46E−55 2.51E−41 7.90E−28 7.39E−53 8.05E−98 0 0
ε + + + + + + =

Rank 8 4 6 7 5 3 1.5 1.5

f5

Mean 4.41E+01 2.90E+01 2.90E+01 2.90E+01 2.68E+01 2.78E+01 2.75E+01 2.57E+01
Std 3.96E+01 2.28E−02 3.25E−02 2.44E−02 1.39E−01 8.87E−02 1.51E−01 1.01E−02
ε + + + + + + +

Rank 8 2 4 3 6 5 7 1

f6

Mean 6.19E−09 9.66E−01 9.14E−01 9.38E−01 8.43E−09 4.11E−07 6.15E−09 5.18E−09
Std 1.34E−09 5.77E−01 4.96E−01 6.20E−01 1.41E−09 1.05E−07 9.52E−10 1.05E−10
ε + + + + + + +

Rank 3 8 6 7 4 5 2 1

f7

Mean 1.83E−02 4.16E−04 5.02E−04 1.10E−03 9.57E−03 1.41E−05 1.14E−05 2.55E−06
Std 6.60E−03 3.69E−04 4.75E−04 9.85E−04 1.13E−02 1.15E−05 1.05E−05 1.92E−06
ε + + + + + + +

Rank 8 4 5 6 7 3 2 1

f8

Mean −2.79E+03 −7.46E+03 −7.59E+03 −7.54E+03 −5.55E+02 −2.83E+03 −2.92E+03 −2.56E+03
Std 3.32E+02 8.53E+02 8.17E+02 7.50E+02 5.06E+02 3.31E+02 2.88E+02 4.19E+02
ε + + + + − + +

Rank 3 6 8 7 1 4 5 2

f9

Mean 1.12E+01 0 0 0 0 0 0 0
Std 6.67E+00 0 0 0 0 0 0 0
ε + = = = = = =

Rank 2 1 1 1 1 1 1 1

f10

Mean 2.00E+01 8.88E−16 8.88E−16 8.88E−16 2.00E+01 2.00E+01 2.00E+01 8.88E−16
Std 5.84E−04 0 0 0 6.05E−14 9.64E−05 6.39E−04 0
ε + = = = = = = =

Rank 4 1 1 1 2 3 5 1

f11

Mean 2.15E−01 0 0 0 0 0 0 0
Std 9.05E−02 0 0 0 0 0 0 0
ε + = = = = = =

Rank 2 1 1 1 1 1 1 1

f12

Mean 2.46E−01 2.34E−02 2.64E−02 5.46E−02 5.78E−12 5.12E−10 3.07E−12 1.66E−02
Std 5.96E−01 1.56E−02 2.62E−02 6.32E−02 2.73E−12 3.81E−10 1.21E−12 8.99E−16
ε + + + + − − −

Rank 8 5 6 7 2 3 1 4

f13

Mean 8.24E−04 2.43E+00 2.14E+00 2.62E+00 2.15E−03 1.92E−03 5.49E−04 2.70E+00
Std 2.89E−03 1.16E+00 1.33E+00 9.68E−01 5.43E−03 4.17E−03 2.39E−03 6.76E−02
ε − + + + − − −

Rank 2 8 7 6 4 3 1 5
ε 12/0/1 10/3/0 10/3/0 10/3/0 7/3/3 8/3/2 4/7/2 +/= /−

Rank Average 5.53 3.92 4.76 5.07 3.61 3.38 2.38 1.76
Overall 8 5 6 7 4 3 2 1
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Table 4. Comparison between SCQ-SSA and other variants on benchmark functions.

No. Index CAOA DMO PPSO HHO-PSO HHO-GWO HHO-SCA SCQ-SSA

f1

Mean 6.55E−08 2.48E−12 2.35E−02 7.62E−98 4.61E−96 1.86E−91 1.30E−133
Std 7.56E−08 2.14E−12 2.73E−02 3.11E−97 2.50E−95 9.49E−91 4.70E−133
ε + + + + + +

Rank 6 5 7 2 3 4 1

f2

Mean 2.05E−05 5.78E−09 1.04E−01 2.49E−51 1.55E−48 2.46E−51 2.05E−53
Std 1.86E−05 3.03E−09 7.25E−02 1.20E−50 8.42E−48 1.11E−50 4.79E−53
ε + + + + + +

Rank 6 5 7 3 4 2 1

f3

Mean 2.28E−04 3.26E+04 2.04E−01 7.38E−75 1.53E−68 8.88E−72 1.10E−131
Std 1.57E−04 1.02E+04 2.69E−01 4.02E−74 8.36E−68 4.86E−71 4.40E−131
ε + + + + + +

Rank 5 7 6 2 4 3 1

f4

Mean 1.38E−03 2.53E+01 2.59E−02 1.23E−47 3.30E−49 8.02E−49 5.29E−67
Std 1.59E−03 4.44E+00 4.04E−02 6.73E−47 1.21E−48 2.83E−48 2.71E−66
ε + + + + + +

Rank 5 7 6 4 2 3 1

f5

Mean 2.55E+01 1.06E+02 2.89E+01 7.32E−03 1.70E−02 1.43E−02 2.88E+01
Std 1.98E+00 1.38E+02 5.03E−01 8.53E−03 2.16E−02 2.02E−02 8.15E−02
ε + + + − − −

Rank 6 7 5 1 3 2 4

f6

Mean 3.41E+00 3.57E−12 3.63E−01 1.44E−04 1.64E−04 2.24E−04 1.02E−04
Std 1.56E−01 1.99E−12 2.39E−01 2.50E−04 3.08E−04 3.38E−04 2.37E−04
ε + − + + + +

Rank 7 1 6 3 4 5 2

f7

Mean 5.16E−06 3.18E−02 2.73E−03 1.77E−04 1.49E−04 1.22E−04 2.21E−05
Std 3.28E−06 6.07E−03 2.22E−03 1.74E−04 1.15E−04 1.10E−04 2.35E−03
ε − + + + + +

Rank 1 7 6 5 4 3 2

f8

Mean −5.94E+03 −9.83E+03 −9.62E+03 −1.25E+04 −1.26E+04 −1.25E+04 −2.59E+03
Std 2.90E+02 7.94E+02 1.43E+03 9.46E−01 1.04E+00 7.66E−01 4.28E+02
ε + + + + + +

Rank 2 3 4 6 7 5 1

f9

Mean 1.22E−08 1.72E+02 4.31E−01 0 0 0 0
Std 2.82E−08 2.36E+01 1.83E+00 0 0 0 0
ε + + + = = =

Rank 2 4 3 1 1 1 1

f10

Mean 1.12E−05 1.11E−06 6.06E−02 8.88E−16 8.88E−16 8.88E−16 8.88E−16
Std 2.86E−05 5.09E−07 1.17E−01 0 0 0 0
ε + + + = = =

Rank 3 2 4 1 1 1 1

f11

Mean 3.45E−03 2.95E−10 8.76E−02 0 0 0 0
Std 4.68E−03 3.90E−10 9.34E−02 0 0 0 0
ε + + + = = =

Rank 3 2 4 1 1 1 1

f12

Mean 5.86E−01 1.87E−02 3.67E−02 1.13E−05 1.13E−05 1.13E−05 1.66E−02
Std 1.83E−01 5.23E−02 5.72E−02 1.50E−05 1.50E−05 1.50E−05 1.13E−15
ε + + + − − −

Rank 5 3 4 1 1 1 2

f13

Mean 2.94E+00 1.71E−03 1.64E+00 1.13E−04 1.13E−04 1.13E−04 2.73E+00
Std 5.93E−02 3.21E−03 5.06E−01 1.66E−04 1.66E−04 1.66E−04 6.15E−02
ε + − + − − −

Rank 4 2 5 1 1 1 3

Rank
ε 12/0/1 11/0/2 13/0/0 7/3/3 7/3/3 7/3/3 +/=/-

Average 4.23 4.23 5.15 2.38 2.76 2.46 1.61
Overall 5 5 6 2 4 3 1
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ity of SCQ-SSA algorithm is better than other algo-
rithms in high-dimensional functions.

4.4 Comparison with the SSA variants

In this subsection, to further investigate the
efficiency of the proposed SSA variant, we com-
pared SCQ-SSA with original slap swarm algo-
rithm (SSA, [15]) and six other SSA variants, in-
cluding Gaussian slap swarm algorithm (GSSA,
[34]), Cauchy slap swarm algorithm (CSSA, [34]),
Levy slap swarm algorithm (LSSA, [34]), Weight
factor and adaptive mutation slap swarm algorithm
(WASSA, [35]), Craziness and adaptive slap swarm
algorithm (CASSA, [36]), Efficient salp swarm al-
gorithm (ESSA, [37]). In this experiment, the num-
ber of dimensions is set to 30, the maximum num-
ber of iterations is set to 5000, the population size is
100, and each experiment is run 40 times. The pa-
rameter settings of the above algorithms are based
on the corresponding original papers

The mean value and standard deviation are used
to evaluate the ability of the algorithm in Table 3,
a summary of average rank and overall rank are
counted in the bottom of Table 3. Inspecting the
data, it is seen that the SCQ-SSA receives the first
rank, then ESSA also performs well, and CASSA,
WASSA, GSSA, CSSA, LSSA, SSA rank third to
eighth respectively. In terms of mean value, SCQ-
SSA can exhibit fine performance on ten functions
( f1, f2, f3, f4, f5, f6, f7, f9, f10, f11). Six SSA
variants have similar performance as SCQ-SSA on
functions ( f9, f10, f11), but it can be obviously no-
ticed that SCQ-SSA achieves the relative optimal
solutions on most functions ( f1, f2, f3, f4, f9, f11)
and even converges to the optimal value 0. As can
be seen from the overall rank data of mean and stan-
dard deviation, the stability and reliability of SCQ-
SSA are obviously better than other variants.

4.5 Comparison with the advanced vari-
ants

A total of thirteen benchmark functions are
used to compare the performances with chaotic
arithmetic optimization algorithm (CAOA, [38]),
Dwarf mongoose optimization algorithm (DMO,
[39]), Pausing particle swarm optimization (PPSO,
[40]), Hybrid Harris Hawks optimizer and parti-

cle swarm optimization (HHO-PSO, [41]), Hybrid
Harris Hawks optimizer and grey wolf optimizer
(HHO-GWO, [42]), Hybrid Harris Hawks opti-
mizer and sine cosine algorithm (HHO-SCA, [43]).
This experiment is fixed on the population of 50.
The maximum number of iterations is set as 1000
in all algorithms; the dimension is fixed at 30 and
each experiment is conducted for 30 times.

The comparison results are provided in Table 4.
There is a slight increase in the performance of
both algorithms on functions ( f1, f2, f3, f4) and
SCQ-SSA can even exceed E−40 to E−60 than
the second-ranked algorithm. Especially, SCQ-SSA
achieves the relative optimal solutions in most func-
tions and obtain the optimal value 0 on functions
( f9, f10, f11). HHO-PSO, HHO-GWO, HHO-SSA
perform good searchability and obtain the fine val-
ues on functions ( f5, f6, f7, f12, f13), it can be seen
from average and overall rank, all three algorithms
are 7/3/3, and average rank gap is small, but the
best overall rank is SCQ-SSA. It means that SCQ-
SS substantially improves the searchability of basic
SSA, the precision and stability of the algorithm are
significantly enhanced.

5 SCQ-SSA for engineering opti-
mization

In this section, the performance of SCQ-SSA is
further verified on three classical engineering prob-
lems, namely tubular column design problem, ten-
sion/compression spring design problem and pres-
sure vessel design problem. The schematic dia-
grams of three design problems are drawn on Auto-
CAD 2010. The optimization model is as follows:

The engineering problems are optimized by
SCQ-SSA according to the following steps:

– Step 1: The constraint engineering problem is
transformed by the penalty function Eq. (3) to
the unconstrained objective function.

– Step 2: The dimension of the algorithm is equal
to the impact factors of the engineering problem.

– Step 3: The objective function of the engineer-
ing problem is considered as the fitness function
of the algorithms. So the SCQ-SSA optimize
the objective function and obtain the minimum
value.
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in all algorithms; the dimension is fixed at 30 and
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SCQ-SSA can even exceed E−40 to E−60 than
the second-ranked algorithm. Especially, SCQ-SSA
achieves the relative optimal solutions in most func-
tions and obtain the optimal value 0 on functions
( f9, f10, f11). HHO-PSO, HHO-GWO, HHO-SSA
perform good searchability and obtain the fine val-
ues on functions ( f5, f6, f7, f12, f13), it can be seen
from average and overall rank, all three algorithms
are 7/3/3, and average rank gap is small, but the
best overall rank is SCQ-SSA. It means that SCQ-
SS substantially improves the searchability of basic
SSA, the precision and stability of the algorithm are
significantly enhanced.

5 SCQ-SSA for engineering opti-
mization

In this section, the performance of SCQ-SSA is
further verified on three classical engineering prob-
lems, namely tubular column design problem, ten-
sion/compression spring design problem and pres-
sure vessel design problem. The schematic dia-
grams of three design problems are drawn on Auto-
CAD 2010. The optimization model is as follows:

The engineering problems are optimized by
SCQ-SSA according to the following steps:

– Step 1: The constraint engineering problem is
transformed by the penalty function Eq. (3) to
the unconstrained objective function.

– Step 2: The dimension of the algorithm is equal
to the impact factors of the engineering problem.

– Step 3: The objective function of the engineer-
ing problem is considered as the fitness function
of the algorithms. So the SCQ-SSA optimize
the objective function and obtain the minimum
value.
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Figure 2. The optimization model.

5.1 Tubular column design problem

Figure 3 shows the design of tubular column
with the lowest cost under the condition of bear-
ing pressure load F = 2500kg f . The physical pa-
rameters of the column is as follow: the elastic
modulus E = 0.85 ∗ 106kg f/cm2,the yield stress
of the material σ = 500kg f/cm2, the density ρ =
0.0025kg f/cm3,The length of the column L =
250cm. The constraints are as follows: the stress of
the column should be less than the buckling stress
(g1) and the yield stress (g2), the average diameter
of the column d is limited in between 2cm (g3) and
14cm (g4), the thickness of the column (h) is in the
range of 0.2cm (g5) and 0.8cm (g6). The mathe-
matical model is as follows:

Consider x⃗ = [d,h] = [x1,x2]

Minimise F (⃗x) = 9.82x1x2 +2x1

Sub ject to




g1 =
F

πx1x2σ −1 ≤ 0
g2 =

8FL2

π3Ex1x2(x12+x22)
−1 ≤ 0

g3 = 2/x1 −1 ≤ 0
g4 = x1/14−1 ≤ 0
g5 = 0.2/x2 −1 ≤ 0
g6 = x2/0.8−1 ≤ 0

As indicated in Table 5, the tubular column is
optimized by eight algorithms, namely Krill herd
algorithm (KH, [44]), Interior search algorithm
(ISA, [45]), Cuckoo search (CS, [29]), Hybridiz-
ing the electromagnetism-like algorithm (Hybrid
EM, [46]), Modified flower pollination algorithm

(MFPA, [47]), Competitive search algorithm (CSA,
[48]), Hybrid self-adaptive orthogonal genetic algo-
rithm (HSO-GA, [49]), Hybrid-Flash Butterfly Op-
timization Algorithm (HFBOA, [50]).

Figure 3. The schematic diagram of tubular
column.

Table 5. Comparison results for tubular column
design problem.

Index x1 x2 F(−→x )

KH 5.4512 0.2919 26.5314
ISA 5.4511 0.2919 26.5313
CS 5.4513 0.2919 26.5321

Hybrid EM 5.4510 0.2919 26.5322
MFPA 5.4512 0.2919 26.4999
CSA 5.4511 0.2919 26.5313

HSO-GA 5.4511 0.2919 26.5313
HFBOA 5.4511 0.2919 26.4995

SCQ-SSA 5.4512 0.2919 26.4962

Two key parameters are calculated and the subjec-
tive function value is obtained. From the table we
can know, SCQ-SSA outperforms eight other algo-
rithms and achieves the lowest cost, and the differ-
ence value is relatively minimal. The optimal val-
ues of HFBOA and MFPA are below 26.5. then
ISA, CSA and HSO-GA have similar performance
and the function value is 26.531, followed by KH,
CS and Hybrid EM. From the data know that SCQ-
SSA does well in tubular column design problem.

Tubular column

Spring

Pressure vessel The minimum value

 SCQ-SSA
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5.2 Spring design problem

Spring is an important component in the indus-
trial system, so the tension/compression spring de-
sign problem becomes a popular structural design
problem. Fig. 4 shows the three main impact fac-
tors, namely the diameter of the wire (d), the turns
of the coil (N) and the diameter of the coil (D). Tak-
ing into account the parameters, the optimization
goal is to obtain the minimum weight. The math-
ematical formulation of this problem is as follows:

Consider x⃗ = [d,D,N] = [x1,x2,x3]

Minimise F (⃗x) = (x3 +2)x2x2
1

Sub ject to




g1(⃗x) = 1− x3
2x3

71785x4
1
≤ 0

g2(⃗x) =
4x2

2−x1x2

12566(x2x3
1−x4

1)
+ 1

5108x2
1
≤ 0

g3(⃗x) = 1− 140.45x1
x2

2x3
≤ 0

g4(⃗x) = x1+x2
1.5 −1 ≤ 0

Where

0.05 ≤ x1 ≤ 2,0.25 ≤ x2 ≤ 1.3,2 ≤ x3 ≤ 15

Figure 4. The schematic diagram of spring.

We analyze the structural weight design of ten-
sion/compression spring in this paragraph. Ta-
ble 6 summarizes the comparison results be-
tween the proposed SSA variants and Veloc-
ity pausing particle swarm optimization (VPPSO,

[40]), Elite archives-driven particle swarm opti-
mization (EAPSO, [51]), Termite life cycle opti-
mizer (TLCO, [52]), Sand cat swarm optimization
(SCSO, [53]), Exploitation-boosted sine cosine al-
gorithm (EBSCA, [54]), adaptive quadratic inter-
polation and rounding mechanism sine cosine al-
gorithm (ARSCA, [55]), quantum particle swarm
optimization with optimal guided Lévy flight and
straight flight (LSFQPSO, [56]), adaptive coopera-
tive foraging and dispersed foraging strategies har-
ris hawks optimization (ADHHO, [57]), Parallel
fish migration optimization with compact technol-
ogy (PCFMO, [58]), efficient salp swarm algorithm
(ESSA, [37]).

The minimum weight of the spring and the min-
imal value are gotten in SCQ-SSA. And ESSA, AD-
HHO, ARSCA, EAPSO also perform well, the dif-
ference between these algorithms and the lowest
value of SCQ-SSA is 10E−6. SCSO obtains the
large weight. These results expose that SCQ-SSA
handles the tension/compression spring efficiently.

Table 6. Comparison results for spring design
problem.

Algorithm x1 x2 x3 F(−→x )

VPPSO 0.05250 0.37560 10.26590 0.012700
EAPSO 0.05152 0.35271 11.52783 0.012666
TLCO 0.05168 0.35673 11.28782 0.012702
SCSO 0.05000 0.31750 14.02000 0.012717

EBSCA 0.05161 0.35493 11.39630 0.012668
ARSCA 0.05165 0.35586 11.34009 0.012666

LSFQPSO 0.05151 0.35239 11.55200 0.012672
ADHHO 0.05184 0.36044 11.07410 0.012666
PCFMO 0.05240 0.37416 10.33800 0.012867
ESSA 0.05173 0.35773 11.23048 0.012666

SCQ-SSA 0.05163 0.35542 11.36510 0.012665

5.3 Pressure vessel design problem

The head and tail of the cylindrical pressure
vessel are sealed with a hemispherical head respec-
tively in Fig. 5. There are many considerations in-
volved in the minimum weight design of the pres-
sure vessel, mainly including four factors: shell
thickness (T ), head thickness (S), inner radius (R),
cylindrical length of the vessel (L) and L exclud-
ing two heads. Therefore, the objective function ex-
pression of the pressure vessel design problem is as
follows:
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We analyze the structural weight design of ten-
sion/compression spring in this paragraph. Ta-
ble 6 summarizes the comparison results be-
tween the proposed SSA variants and Veloc-
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Algorithm x1 x2 x3 F(−→x )
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TLCO 0.05168 0.35673 11.28782 0.012702
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5.3 Pressure vessel design problem

The head and tail of the cylindrical pressure
vessel are sealed with a hemispherical head respec-
tively in Fig. 5. There are many considerations in-
volved in the minimum weight design of the pres-
sure vessel, mainly including four factors: shell
thickness (T ), head thickness (S), inner radius (R),
cylindrical length of the vessel (L) and L exclud-
ing two heads. Therefore, the objective function ex-
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Consider −→x = [T,S,R,L] = [x1,x2,x3,x4]

Minimise F(−→x ) = 0.6224x1x3x4 +1.7781x2x2
3

+3.1661x2
1x4 +19.84x2

1x3

Sub ject to




g1(
−→x ) =−x1 +0.0193x3 ≤ 0

g2(
−→x ) =−x2 +0.00954x3 ≤ 0

g3(
−→x ) =−πx2

3x4 − 4
3 πx3

3
+1296000 ≤ 0
g4(

−→x ) = x4 −240 ≤ 0

Where 0 ≤ x1,x2 ≤ 99, 10 ≤ x3,x4 ≤ 200

Figure 5. The schematic diagram of pressure
vessel.

Table 7. Comparison results for pressure vessel
design problem.

Algorithm x1 x2 x3 x4 F(−→x )
BeSD 0.794 0.412 41.047 191.877 6029.171
HPSO 0.812 0.437 42.098 176.636 6059.714

PHSSA 0.815 0.426 42.091 176.742 6043.986
AOA 0.830 0.416 42.751 169.345 6048.784
PRO 1.125 0.625 58.290 43.692 6050.713

EWOA 0.901 0.452 46.678 127.096 6160.209
ARSCA 0.812 0.437 42.097 176.645 6059.805

SCQ-SSA 0.812 0.403 42.334 173.741 5947.187

As revealed in Table 7, the pressure vessel
design of SCQ-SSA is compared with the bezier
search differential evolution algorithm (BeSD,
[59]), the human behavior-based particle swarm
optimization (HPSO, [60]), the hybridized SSA
along with the proportional selection scheme
(PHSSA, [61]), Arithmetic optimization algorithm
(AOA, [33]), Poor and rich optimization algorithm
(PRO, [62]), Evolutionary biogeography-based
whale optimization method (EWOA, [63]), adap-
tive quadratic interpolation and rounding mecha-
nism sine cosine algorithm (ARSCA, [55])

It is evident that SCQ-SSA manages to optimize
four structural parameters and obtains wonderful re-
sults with the minimum weight. The weight is cal-
culated by the other algorithms is over 6000, the
weight is relatively large and the design is not de-

sired. In contrast, SCQ-SSA outperforms seven rest
algorithms obviously, and the design of the weight
is optimized to reduce about 210. It is considered to
be a sign of the fine performance of the SCQ-SSA
in solving this problem.

6 Conclusion

In this paper, three main strategies are adopted
to enhance the standard SSA, namely SCQ-SSA.
The initial value is generated by Circle chaos,
the sine-cosine mechanism and quantum compu-
tation are employed to modify the update of the
position. SCQ-SSA is compared with seven al-
gorithms in high-dimensional functions (1000 di-
mensions), seven SSA variants and six advanced
variants to validate the search performance on the
benchmark functions. The results demonstrate
the superiority of SCQ-SSA in providing good
quality of solutions with high convergence perfor-
mance for most functions. Besides, SCQ-SSA op-
timizes the design of three classical engineering
problems, including tubular column design prob-
lem, tension/compression spring design problem
and pressure vessel design problem. These data
prove the superiority of SCQ-SSA overs the exist-
ing approaches in solving these optimization prob-
lems.

In future work, we will share more the improve-
ment of meta-heuristic algorithms, such as GOA,
SSA and WOA as well. Meta-heuristic algorithms
and machine learning algorithms will be integrated
to optimize prediction and classification. In ad-
dition, the meta-heuristic algorithm will be em-
ployed to optimize more engineering problems, for
instance, speed reducer design, car side impact de-
sign, reinforced concrete beam design.
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