PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of Hydrodynamic Cavitation to Improve the Biodegradability of Municipal Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the application of hydrodynamic cavitation to improve the biodegradability index of mechanically pre-treated municipal wastewater was examined. The experiments were carried out at the pressure of 3.5, 5, and 7 bar, which was sustained every time in the inlet zone of the cavitation device. As a result, the concentration of soluble chemical and biochemical oxygen demand increased, indicating an effective decomposition and solubilization of complex organic matter. These were accompanied by a visible drop in COD value; in turn, increases in the BOD5/COD ratio known as biodegradability index were observed.
Rocznik
Strony
155--160
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Lublin University of Technology, Faculty of Environmental Engineering, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Bagal M.V., Gogate P.R. 2014. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review. Ultrasonics Sonochemistry. 21, 1–14.
  • 2. Bis M., Montusiewicz A., Ozonek J., PasiecznaPatkowska S. 2015. Application of hydrodynamic cavitation to improve the biodegradability of mature landfill leachate. Ultrasonics Sonochemistry 26, 378–387.
  • 3. Burzio E., Bersani F., Caridi G.C.A., Vesipa R., Ridolfi L., Manes C. 2020. Water disinfection by orifice-induced hydrodynamic cavitation. Ultrasonics Sonochemistry 60, 104740.
  • 4. Dhanke P., Wagh S., Patil A. 2020. Treatment of fish processing industry wastewater using hydrodynamic cavitational reactor with biodegradability improvement. Water Science and Technology doi: https://doi.org/10.2166/wst.2020.049.
  • 5. Dhanke P., Wagh S. 2019. Treatment of vegetable oil refinery wastewater with biodegradability index improvement. Materials Today: Proceedings doi: https://doi.org/10.1016/j.matpr.2019.10.004
  • 6. Dular M.; Griessler-Bulc T.; Gutierrez-Aguirre I.; Heath E.; Kosjek T.; Klemencic A.K.; Oder M.;Petkovsek M.; Racki N.; Ravnikar M., Sarc A., Sirok B., Zupanc M., Zitnik M., Kompare B. 2016.. Use of hydrodynamic cavitation in (waste)water treatment. Ultrasonics Sonochemistry.29, 577–588.
  • 7. Gągol M., Przyjazny A., Boczkaj G. 2018. Wastewater treatment by means of advanced oxidation processes based on cavitation – A review. Chemical Engineering Journal 338, 599–627.
  • 8. Gogate P.R., Thanekar P.D, Oke A.P. 2020. Strategies to improve biological oxidation of real wastewater using cavitation based pre-treatment approaches, Ultrasonics Sonochemistry 64, 105016.
  • 9. Ibrahim S., Azab El-Liethy M., Abia A.L.K., AbdelGabbar M., Mahmoud Al Zanaty A., Mohamed Kamel M. 2020. Design of a bioaugmented multistage biofilter for accelerated municipal wastewater treatment and deactivation of pathogenic mi croorganisms, Science of the Total Environment 703, 134786.
  • 10. Korpe S., Bethi B., Sonawaneb S.H., Jayakumar K.V.2019. Tannery wastewater treatment by cavitation combined with advanced oxidation process (AOP), Ultrasonics Sonochemistry 59, 104723.
  • 11. Mancuso G., Langone M., Andreottola G., Bruni L. 2019. Effects of hydrodynamic cavitation, lowlevel thermal and low-level alkaline pre-treatments on sludge solubilisation. Ultrasonics Sonochemistry 59, 104750.
  • 12. Montusiewicz A., Bis M., Pasieczna-Patkowska S., Majerek D. 2018. Mature landfill leachate utilization using a cost-effective hybrid method. Waste Management 76, 652–662.
  • 13. Padoley K.V.,Saharan V.K., Mudliara S.N., Pandey R.A., Pandit A.B. 2012. Cavitationally induced biodegradability enhancement of a distillery wastewater. Journal of Hazardous Materials 219–220, 69–74.
  • 14. Preece K.E., Hooshyar N.,Krijgsman A.J., Fryer P.J., Zuidam N.J. 2017. Intensification of protein extraction from soybean processing materials using hydrodynamic cavitation. Innovative Food Science and Emerging Technologies 41, 47–55.
  • 15. Sikosana M.L., Sikhwivhilu K., Moutloali R., Madyira D.M. 2019. Municipal wastewater treatment technologies: a review, Procedia Manufactiring 35, 1018–1024.
  • 16. Simpson A., Ranade V.V. 2018. Modelling of hydrodynamic cavitation with orifice: Influence of different orifice designs. Chemical Engineering Research and Design 136, 698–711.
  • 17. Thanekar P., Gogate P. 2018. Application of Hydrodynamic Cavitation Reactors for Treatment of Wastewater Containing Organic Pollutants: Intensification Using Hybrid Approaches, Fluids 3, 98.
  • 18. Waghmare A.,Nagula K., Pandit A., Arya S. 2019. Hydrodynamic cavitation for energy efficient and scalable process of microalgae cell disruption. Algal Research 40, 101496.
  • 19. Wang X., Zhang Y. 2009. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation. Journal of Hazardous Materials 161, 202–207.
  • 20. Yan J., Ai S., Yang F., Zhang K., Huang Y. 2020. Study on mechanism of chitosan degradation with hydrodynamic cavitation, Ultrasonics Sonochemistry doi: https://doi.org/10.1016/j.ultsonch.2020.105046.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6418d229-f58b-448e-84e8-56b2ff5a5034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.