PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Synthesis of pneumatic systems in the control of the transport line of rolling elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the synthesis of a pneumatic control system for a selected configuration of the transport path for the delivery of rolling elements to spiral storage in inter-operational transport. The sequential control system sets the state of the manifolds to ensure a flow of workpieces to serve the subsequent storage. The essential module of the control system is the memory block. It is developed based on a storage filling sequence graph. The filling level of the storages can be monitored in one or two points using sensors. The rolling element displacement control sensors work together with appropriately designed systems to execute the delay of the rising and falling edge input signal. By using a two-level control of the filling level of the storages, it is possible to control the emptying status of the storages as a function of the technological time of removal of the items from the storage between the two control points. Control systems were synthesised and verified using Festo’s FluidSim computer programme.
Rocznik
Strony
254--262
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7,25-314 Kielce, Poland
  • Faculty of Electrical Engineering, Automation and Computer Science, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
autor
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7,25-314 Kielce, Poland
Bibliografia
  • 1. Mychuda Z, Mychuda L, Antoniv U, Szcześniak A. Logarithmic ADC with accumulation of charge and impulse feedback – construction, principle of operation and dynamic properties. International Journal of Electronics and Telecommunications. 2021 Dec 1;67(4):699–704. doi: 10.24425/ijet.2021.137865
  • 2. Szcześniak A, Mychuda Z. Analiza prądów upływu logarytmicznego przetwornika analogowo-cyfrowego z sukcesywną aproksymacją. Przegląd Elektrotechniczny. 2012;R. 88, nr 5a:247–50.
  • 3. El-Maleh A. A Note on Moore Model for Sequential Circuits. 2016. https://www.researchgate.net/publication/305268049_A_Note_on_Moore_Model_for_Sequential_Circuits
  • 4. Horowitz P, Hill W. The art of electronics. Cambridge university press Cambridge; 2002.
  • 5. Chhillar K, Dahiya S. Design of Sequential Circuits with Timing Analysis and Considerations. Int J Eng Sci Comput. 2017;7: 808–11809.
  • 6. Widmer NS, Moss GL, Tocci RJ. Digital systems: principles and applications. Twelfth edition. Boston: Pearson; 2017.
  • 7. Gorzałczany M.B. Układy Cyfrowe—Metody Syntezy. Tom II: Układy Sekwencyjne, Układy Mikroprogramowane. Kielce, Poland: Wydaw-nictwo Politechniki Świętokrzyskiej; 2003.
  • 8. Szcześniak Z, Szcześniak A. Projektowanie układów sterowania dla automatyzacji procesów technologicznych. Kielce, Poland: Wydaw-nictwo Politechniki Świętokrzyskiej; 2015.
  • 9. Borden TR, Cox RA, Cox RA. Technician’s guide to programmable controllers. 6th ed. Clifton Park, NY: Delmar, Cengage Learning; 2013.
  • 10. Fernandez P, del Carpio C, Rocca E, Vinces L. An Automatic Control System Using the S7-1200 Programmable Logic Controller for the Ethanol Rectification Process. In: 2018 IEEE XXV International Con-ference on Electronics, Electrical Engineering and Computing (IN-TERCON). Lima: IEEE; 2018 p. 1–4. Available from: https://ieeexplore.ieee.org/document/8526382/
  • 11. Szcześniak A, Szcześniak Z. Algorithmic Method for the Design of Sequential Circuits with the Use of Logic Elements. Applied Scienc-es. 2021 Nov 23;11(23):11100. doi: 10.3390/app112311100
  • 12. Szcześniak A, Szcześniak Z. Fast Designing Ladder Diagram of Programmable Logic Controller for a technological process. Interna-tional Journal of Electronics and Telecommunications. 2022 Nov 30;68(4):709–14. doi: 10.24425/ijet. 022.141289
  • 13. Phan VD, Vo CP, Dao HV, Ahn KK. Actuator Fault-Tolerant Control for an Electro-Hydraulic Actuator Using Time Delay Estimation and Feedback Linearization. IEEE Access. 2021;9:107111–23. doi: 10.1109/ACCESS.2021.3101038
  • 14. Herbuś K, Ociepka P. Verification of operation of the actuator control system using the integration the B&R Automation Studio software with a virtual model of the actuator system. IOP Conf Ser: Mater Sci Eng. 2017 Aug;227:012056. doi:10.1088/1757-899X/227/1/012056
  • 15. Acuña-Bravo W, Canuto E, Agostani M, Bonadei M. Proportional electro-hydraulic valves: An Embedded Model Control solution. Con-trol Engineering Practice. 2017 May;62:22–35. doi: 10.1016/j.conengprac.2017.01.013
  • 16. Wu D, Wang X, Ma Y, Wang J, Tang M, Liu Y. Research on the dynamic characteristics of water hydraulic servo valves considering the influence of steady flow force. Flow Measurement and Instrumen-tation. 2021 Aug 1;80:101966. doi: 10.1016/j.flowmeasinst.2021.101966
  • 17. Szcześniak A, Szcześniak Z. Mikroprocesorowe przetwarzanie sygnałów optoelektronicznego przetwornika położenia. Przegląd El-ektrotechniczny. 2009;R. 85, nr 4:153–8.
  • 18. Vo CP, Ahn KK. High-precision Position Control of Soft Actuator Systems - The 3rd International Workshop on Active Materials and Soft Mechatronics (AMSM2018). In KAIST, Daejeon, South Korea
  • 19. Zhang Y, Yue H, Li K, Cai M. Analysis of Power Matching on Energy Savings of a Pneumatic Rotary Actuator Servo-Control System. Chin J Mech Eng. 2020 Dec;33(1):30. doi: 10.1186/s10033-020-00445-3
  • 20. Szcześniak A. Analiza przetwarzania sygnałów logarytmicznego przetwornika analogowo - cyfrowego z sukcesywną aproksymacją. Kielce, Poland: Wydawnictwo Politechniki Świętokrzyskiej; 2019
  • 21. Mychuda Z, Zhuravel I, Mychuda L, Szcześniak A, Szcześniak Z, Yelisieieva H. Mathematical Modelling of the Influence of Parasitic Capacitances of the Components of the Logarithmic Analogue-to-Digital Converter (LADC) with a Successive Approximation on Switched Capacitors for Increasing Accuracy of Conversion. Elec-tronics. 2022 May 6;11(9):1485. doi:10.3390/electronics11091485.
  • 22. Mychuda Z, Mychuda L, Antoniv U, Szcześniak A. Logarithmic ADC with Accumulation of Charge and Impulse Feedback : Analysis and Modeling. International Journal of Electronics and Telecommunica-tions. 2021;Vol. 67, No. 4:705–10. doi: 10.24425/ijet.2021.137866
  • 23. Mychuda Z, Zhuravel I, Mychuda L, Szcześniak A, Szcześniak Z. Modelling a New Multifunctional High Accuracy Analogue-to-Digital Converter with an Increased Number of Inputs. Electronics. 2022 May 25;11(11):1677. doi:10.3390/electronics11111677
  • 24. Time delay valve VZ-3-PK-3 data sheet. Available from: https://www.festo.com/tw/en/a/download-document/datasheet/5755
  • 25. Air gap sensors catalogue. Available from: https://www.festo.com/pl/pl/c/produkty/automatyka-przemyslowa/czujniki/czujniki-szczelinowe-powietrzne-id_pim139/
  • 26. Kisielewski P, Sobota Ł. Zastosowanie teorii masowej obsługi do modelowania systemów transportowych. Autobusy: technika, eksplo-atacja, systemy transportowe. 2016;17(6):600–4.
  • 27. Ficoń K. Zastosowanie teorii masowej obsługi do analizy systemu zabezpieczenia logistycznego sytuacji kryzysowych. SLW. 2017 Dec 29;47(2):59–79.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-641765bc-0034-4d23-be98-17d716f10e57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.