PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elongation determination using finite element and boundary element method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an application of the finite element method and boundary element method to determine the distribution of the elongation. Computer simulations were performed using the computation of numerical algorithms according to a mathematical structure of the model and taking into account the values of all other elements of the fiber Bragg grating (FBG) sensor. Experimental studies were confirmed by elongation measurement system using one uniform FBG.
Twórcy
autor
  • Lublin University of Technology, Institute of Electronics and Information Technology, Lublin, Poland
autor
  • Lublin University of Technology, Institute of Electronics and Information Technology, Lublin, Poland
autor
  • Kazakh National Research Technical University after K. I. Satpaev, Kazakhstan
  • Kazakh National Research Technical University after K. I. Satpaev, Kazakhstan
autor
  • Lublin University of Technology, Institute of Electronics and Information Technology, Lublin, Poland
Bibliografia
  • [1] H. Fujii, T. Namazu, S. Inoue, R. Dembo, D. Rosen, “Development of the Novel Elongation-Measurement Device with In-Plane Bimorph Actuator for the Tensile Test,” Micro Electro Mechanical Systems 2009, MEMS 2009. IEEE 22nd International Conference on, pp. 1063-1066, 2009.
  • [2] A. Granda, F. M. F. Linera, G. Vecino, A. Diaz Canga, ”Practical Speed and Elongation Measurement, Using Encoders, for a Temper Mill,” Industry Applications, IEEE Transactions on, vol. 50(1), pp. 113-119, 2014.
  • [3] M. Szustakowski, N. Palka, B. Kizlik, ”Contrast of the Fiber optic Michelson interferometer - a new prospect for elongation measurement,” Modern Problems of Radio Engineering, Telecommunications and Computer Science, Proceedings of International Conference IEEE, pp. 476-477, 2004.
  • [4] A. Wolff, D. Cramer, H. Hellebrand, I. Probst, K. Lubitz, ”Optical two channel elongation measurement of PZT piezoelectric multilayer stack actuators,” Applications of Ferroelectrics, 1994.ISAF ’94. Proceedings od the Ninth IEEE International Symposium on, pp. 755-757, 1994.
  • [5] R. K. Yamashita, W. Zou, Z. He, K. Hotate, ”Measurement Range Elongation Based on Temporal Gating in Brillouin Optical Correlation Domain Distributed Simultaneous Sensing of Strain and Temperature,” Photonics Technology Letters, IEEE vol. 24(12), pp. 1006-1008, 2012.
  • [6] E. Roger, A. Khayat, L. A. Utracki, F. Godbile, J. Picot, "Influence of shear and elongation on drop deformation in convergent-divergent flows", International Journal of Multiphase Flow vol. 26(1), pp. 17-44, 2000.
  • [7] U. Iturraran-Viveros, F. J. Sanchez-Sesma, F. Luzon, ”Boundary element simulation of scattering of elastic waves by 3-D cracks,” Journal of Applied Geophysics vol. 64(3-4), pp. 70-82, 2008.
  • [8] Y. Liu, N. Nishimura, Y. Otani, ”Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method,” Computational Materials Science vol. 34(2), pp. 173-187, 2005.
  • [9] S. Chatelin, C. Deck, F. Renard, S. Kremer, C. Heinrich, J. P. Armspach, R. Willinger, ”Computation of axonal elongation in head trauma finite element simulation,” Journal of the Mechanical Behavior of Biomedical Materials vol. 4(8), pp. 1905-1919, 2011.
  • [10] Y. B. Fu, C. K. Chui, ”Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data,” Journal of Biomechanics vol. 47(10), pp. 2430-2435, 2014.
  • [11] E. Lin, H. Chen, Y. Liu, ”Finite element implementation of a non-local particle method for elasticity and fracture analysis,” Finite Elements in Analysis and Design vol. 93, pp. 1-11, 2015.
  • [12] M. Hadjicharalambous, J. Lee, N. P. Shith, D. A. Nordsletten, ”A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics,” Computer Methods in Applied Mechanics and Engineering vol. 274, pp. 213-236, 2014.
  • [13] P. Kisała, ”Measurement of the maximum value of non-uniform strain using a temperature-insensitive fibre Bragg grating method,” Opto-electronics Review vol. 21(3), pp. 293-302, 2013.
  • [14] P. Kisała, ”Metrological conditions of strain measurement optoelectronic method by the use of fibre Bragg gratings,” Metrology and Measurement Systems vol. 19(3), pp. 471-480, 2012.
  • [15] M. Czerwiński, J. Mroczka, T, Girasole, G. Gouesbet, G. Grehan, ”Light-Transmittance Predictions Under Multiple-Light Scattering Conditions. I. Direct Problem: hybrid-Method Approximation,” Applied Optics vol. 51(11), pp. 1715-1723, 2012.
  • [16] J. Mroczka, D. Szczuczyński, ”Improved regularized solution of the inverse problem in turbidimetric measurements,” Applied Optics vol. 49(24), pp. 4591-4603, 2010.
  • [18] P. Kisała, ”Generation of a zone chirp in uniform Bragg grating as a way of obtaining double functionally of a sensor,” Metrology and Measurement Systems vol. 19(4), pp.727-738, 2012.
  • [19] J. Mroczka,”The cognitive process in metrology,” Measurement vol. 46(8), pp. 2896-2907, 2013.
  • [20] S. Cięszczyk, “Passive Open-Path FTIR Measurements and Spectral Interpretations for in situ Gas Monitoring and Process Diagnostics,” Acta Physica Polonica A 126(3), pp. 673-678, 2014.
  • [21] S. Cięszczyk, “Non-Luminous Flame Temperature Determination Method Based on CO2 Radiation Intensity,” Acta Physica Polonica A 126(6), pp. 1235-1240, 2014.
  • [22] G. Świrniak, G. Głomb, J. Mroczka, “Inverse analysis of the rainbow for the case of low-coherent incident light to determine the diameter of a glass fiber,” Applied Optics vol. 19(1), pp. 4239-4247, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6413930b-6b7a-47aa-8f41-556821d86543
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.