PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrating radiometric and aeromagnetic data for assessment of geothermal potential: a case study in Central Eastern Desert, Egypt

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research paper presents a comprehensive investigation into the untapped geothermal potential of Egypt’s Central Eastern Desert, highlighting its viability as a promising contender in the pursuit of sustainable energy resources. Through a rigorous multi-disciplinary approach, we systematically assess the feasibility of deploying geothermal energy in the region, supported by meticulous analysis of diverse data sources, including aeromagnetic and radiometric datasets. Our study identifies two primary sources of heat flow energy: granitic rocks enriched with radioactive minerals and dynamic geological motions. By using techniques such as derivative analysis, power spectra analysis, and heat flow calculations, we evaluate the geothermal potential using aeromagnetic data. The tilted derivative operator enables the detection of geological structures, while Curie depth points (CDPs) provide insights into the geothermal gradient and heat flow maps, revealing the distribution of subsurface heat. Surface heat flow calculations further assess the energy generation potential. Additionally, our analysis incorporates methods to estimate radioactive heat production within geological formations, considering uranium, thorium, and potassium isotopes. The ratios of potassium to thorium and uranium to thorium serve as indicators of hydrothermal alteration zones. The research findings reveal a wide range of heat flow values within the depths of the Curie depth point (CDP), ranging from 200 to 700 W/m2. At the surface, observed heat flow values range from 6 to 22 mW/m2, although relatively lower in magnitude, still hold significant potential for energy production. It is important to acknowledge the contribution of radioactive minerals, as the heat production from these sources ranges from 0 to 35 W/m3. Collectively, these heat sources present viable opportunities for energy extraction, particularly in the area between Safaga and Qusier and the area south of Qusier to Marsa Allam. Surface heat flow and radioactive heat production offer promising prospects for sustainable energy generation.
Czasopismo
Rocznik
Strony
235--251
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
  • Geology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
autor
  • National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt
autor
  • Geology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
Bibliografia
  • 1. Abdel ZM, Saibi H, El Nouby M, Ehara S (2011) A preliminary regional geothermal assessment of the Gulf of Suez Egypt. J Afr Earth Sci 60(3):117-132
  • 2. Abdel ZM, Saibi H, Nishijima J, Fujimitsu Y, Mesbah H, Ehara S (2012) Exploration and assessment of the geothermal resources in the Hammam Faraun hot spring Sinai Peninsula, Egypt. J as Earth Sci 45:256-267
  • 3. Abdel ZM, Saibi H, Mansour K, Khalil A, Soliman M (2018) Geothermal exploration using airborne gravity and magnetic data at Siwa Oasis, Western Desert Egypt. Renew Sustain Energy Rev 82(3):3824-3832
  • 4. Abdel Zaher M, Saibi H, Ehara S (2008) Geophysical structures of several geothermal fields with conceptual, numerical models of the hottest spring in Egypt. Proceeding of renewable energy 2008, CD-ROM
  • 5. Aero Service (1984) Final report on airborne magnetic/radiation survey in Eastern Desert, Egypt. Work completed for the egyptian general petroleum corporation (EGPC). Six volumes, Aero Service, Houston, Texas, USA
  • 6. Blakely RJ, Simpson RW (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51(7):1494- 1498. https://doi.org/10.1190/1.1442057
  • 7. Boulos F (1989) Geothermal development of hammam faraun hot spring, Sinai-Egypt. In: international conference on applications of solar and renewable energy
  • 8. Boulos F (1990) Some aspects of the geophysical regime of Egypt in relation to heat flow, ground water, and microearthquakes [Chapter 6], In Said R. The geology of Egypt, Routledge, London, 61-89
  • 9. Browne PR, Lawless JV, Christie RW (1990) Geology and geothermal resources of the Wairakei-Taupo volcanic zone, New Zealand. New Zealand Geological Survey Bulletin, 107
  • 10. Chandrasekharam D, Lashin A, Al Arifi N, Al Bassam A, Varun C, Singh HK (2016) Geothermal energy potential of the eastern desert region. Egypt Environ Earth Sci 75(8):697. https://doi.org/ 10.1007/s12665-016-5534-4
  • 11. Elbarbary MA, Zaher H, Mesbah A, El-Shahat AE (2018) Curie point depth, heat flow 525 and geothermal gradient maps of Egypt deduced from aeromagnetic data. Renew Sustain Energy Rev 91:620-629
  • 12. El-Sayed RAM, Assran HM, Elatta SAA (2014) Petrographic, radiometric and paleomagnetic studies for some alkaline rocks, south Nusab El Balgum mass complex, south-western Egypt. Geomaterials 4:27-46
  • 13. El-Sayed E, El-Fakharani A, Zahran H, El-Nady O (2021) Geochemistry, petrography, and tectonic setting of the metasedimentary rocks from the Central Eastern Desert. Egypt J Afr Earth Sci 173:104103
  • 14. Emam A, Moghazy NM, El-Sherif AM (2011) Geochemistry, petrogenesis and radioactivity of el Hudi I-type younger granites, South Eastern Desert. Egypt Arab J Geosci 4:863-878. https://doi.org/ 10.1007/s12517-009-0108-3
  • 15. Gaafar I (2014) Geophysical mapping, geochemical evidence and mineralogy for Nuweibi rare metal albite Granite, Eastern Desert. Egypt Open J Geol 04(4):108-136. https://doi.org/10.4236/ojg. 2014.44010
  • 16. GSE Geological Survey of Egypt. Geologic map of Egypt. Scale 1(2), 000,000; 1981
  • 17. Hinze WJ, Von Frese RRB, Saad AH (2013) Gravity and magnetic exploration principles, practices, and applications. Cambridge University Press, New York
  • 18. Hsieh H, Chen C, Lin P, Yen H (2014) Curie point depth from spectral analysis of magnetic data in Taiwan. J Asian Earth Sci 90:26-33. https://doi.org/10.1016/j.jseaes.2014.04.007
  • 19. Huang J, Chen Y, Sun Z, Zhang J, Gong J (2019) Geochemical and thermal constraints on the origin of the South China Sea basalts: a review. J Asian Earth Sci 173:218-238
  • 20. Jimenez-Munoz JC, Sobrino JA, Skoković D (2014) A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans Geosci Remote Sens 52(6):3815-3824
  • 21. Li ZL, Tang BH, Wu H, Ren H, Yan G, Wan Z, Weng F (2013) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14-37
  • 22. Li X, Zhang Y, Wang H, Li T (2015) Application of tilted derivative operator to delineate magnetic basement structures in the North Yellow Sea basin. J Geophys Eng 12(5):815-823. https://doi.org/ 10.1088/1742-2132/12/5/815
  • 23. Lundmark AM, Andresen A, Hassan MA, Augland LE, Boghdady GY (2012) Repeated magmatic pulses in the East African Orogen in the Eastern Desert, Egypt: an old idea supported by new evidence. Gondwana Res 22(1):227-237. https://doi.org/10.1016/j.gr.2011. 08.017
  • 24. Maden N (2010) Curie-point depth from spectral analysis of magnetic data in Erciyes Stratovolcano (central Turkey). Pure Appl Geophys 167(3):349-358. https://doi.org/10.1007/s00024-009-0017-0
  • 25. Mohamed HS, Abdel Zaher M, Senosy MM, Saibi H, El Nouby M, Fairhead JD (2015) Correlation of aerogravity and BHT data to develop a geothermal gradient map of the Northern Western Desert of Egypt using an artificial neural network. Pure Appl Geophys 172:1585-1597. https://doi.org/10.1007/s00024-014-0998-1
  • 26. Mohamed, A.Z., Ehara, S., Saibi H. (2008) Conceptual and numerical modeling of hammam faraun hot spring, Sinai Peninsula, Egypt. Oral presentation at 2008 Annual Meeting Geothermal Research Society of Japan, October, Japan
  • 27. Morgan P, Boulos FK, Swanberg CA (1983) Regional geothermal exploration in Egypt. Geophys Prospect 31(2):361-376. https:// doi.org/10.1111/j.1365-2478.1983.tb01059.x
  • 28. Morgan P, Boulos FK, Hennin SF, El-Sherif AA, El-Sayed AA, Basta NZ et al (1985) Heat flow in Eastern Egypt: the thermal signature of a Continental breakup. J Geodyn 4(1-4):107-131. https://doi.org/10.1016/0264-3707(85)90055-9
  • 29. Okubo Y, Graf RJ, Hansen RO, Ogawa K, Tsu H (1985) Curie point depths of the island of Kyushu and surrounding areas. Japan Geophys 50(3):481-494. https://doi.Org/10.1190/1.1441926
  • 30. Parry SJ, Hodson KR, Barron AJ (2010) Geology and thermal characteristics of the Taupo Volcanic Zone. New Zealand: a Rev Geotherm 39(3):239-254
  • 31. Perrin M, Saleh A, Alva-Valdivia L (2009) Cenozoic and Mesozoic basalt from Egypt: a preliminary survey. Earth Planets Sp 61:51- 60. https://doi.org/10.1186/BF03352884
  • 32. Raslan MF, El-Feky MG (2012) Radioactivity and mineralogy of the altered granites of the Wadi Ghadir shear zone, South Eastern Desert. Egypt Chin J Geochem 31(1):30-40. https://doi.org/10.1007/s11631-012-0546-6
  • 33. Refaat MM, Karameldin A, Abdel-Fattah AA (2016) Geochemical and geophysical investigations of geothermal potential in the Red Sea region. Egypt J Afr Earth Sci 120:1-15. https://doi.org/10.1016/j. jafrearsci.2016.03.016
  • 34. Riquelme R, Montalvo S, Pizarro J, Jara P, Parada MA (2021) Evaluation of geothermal potential in the Andean volcanic belt in Chile using uranium and thorium concentration ratios. Energies 14(3):729
  • 35. Saha D, Sain K, Deb M (2021) Estimation of geothermal resources and heat flow in the Himalayan region using the Curie depth method. J Earth Syst Sci 130(4):1-15
  • 36. Saleh S, Salk M, Pamukçu O (2013) Estimating Curie point depth and heat flow Map for northern Red Sea rift of Egypt and its surroundings, from aeromagnetic data. Pure Appl Geophys 170(5):863- 885. https://doi.org/10.1007/s00024-012-0461-0
  • 37. Saleh GM, Salem IA, Darwish M, Mostafa DA (2014) Gabal El Faliq granitoid rocks of the southeastern Desert, Egypt: geochemical constraints, mineralization and spectrometric prospecting. World Earth Planet Sci 1-1:1-22
  • 38. Salem A, Williams S, Fairhead D, Smith R, Ravat D (2008) Interpretation of magnetic data using tilt-angle derivatives. Geophysics 73:L1-L10
  • 39. Salem, Ahmed & Green, Chris & Ravat, Dhananjay & Singh, K H & East, Paul & Fairhead, James & Mogren, Saad & Biegert, Ed.
  • 40. (2014) Depth to curie temperature across the central red sea from magnetic data using the de-fractal method. Tectonophysics. 624-625. https://doi.org/10.1016/j.tecto.2014.04.027
  • 41. Salem A, Ushijima K, Elsirafi A, Mizunaga H. (2000) Spectral analysis of aeromagnetic data for geothermal reconnaissance of Quseir area, northern Red Sea, Egypt. In: Proceedings of the world geothermal congress. 16691674, 1669-74
  • 42. Shuey RT, Schellinger DK, Tripp AC, Alley LB (1977) Curie depth determination from aeromagnetic spectra. Geophys J Int 50(1):75- 101. https://doi.org/10.1111/j.1365-246X.1977.tb01325.x
  • 43. Stampolidis A, Kane I, Tsokas GN, Tsourlos P (2005) Curie point depths of Albania inferred from ground total field magnetic data. Surv Geophys 26(4):461-480. https://doi.org/10.1007/s10712-005-7886-2
  • 44. Stern RJ (1985) The Najd Fault System, Saudi Arabia and Egypt: a Late Precambrian rift-related transform system? Tectonics 4(5):497-511. https://doi.org/10.1029/TC004i005p00497
  • 45. Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101(1-2):29-67. https://doi.org/10.1016/j.earscirev.2010. 01.002
  • 46. Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306(3-4):461-470. https://doi.org/10.1016/S0040-1951(99)00072-4
  • 47. Tselentis G (1991) An attempt to define Curie point depths in Greece from aeromagnetic and heat flow data. Pageoph 136(1):87-101. https://doi.org/10.1007/BF00878889
  • 48. Turcotte DL, Schubert G (1982) Geodynamics. Cambridge University Press, New York
  • 49. Zhang XX, Li JY, Yuan JH (2019) Mapping hydrothermal alteration zones by integrating ASTER data and geochemical data in the Tengchong volcanic field, SW China. J Geochem Explor 203:13-25
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6411cbe2-4f19-4021-8ec0-dc233b067c6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.