PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental evaluation of a helical laboratory photobioreactor for cultivation of thermophilic cyanobacteria – hydrodynamics and mass transfer studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to present the hydrodynamic, mass transfer and illumination characteristics of a laboratory helical-tube photobioreactor Biostat PBR-2S, commercially available and used in many laboratories in Poland and worldwide. The investigated hydrodynamics parameters were: mean liquid circulation rate, liquid velocity/residence time in the tubular part of the apparatus and mixing time, measured in the wide range of rotary speed of the circulation pump. The influence of the aeration intensity on these parameters was also checked. The volumetric oxygen and carbon dioxide transfer coefficients in the liquid phase and their dependency on the liquid circulation rate and gas inflow rate were determined. The experiments were performed in tap water and then in a real three-phase cultivation broth at the end of thermophilic cyanobacteria T. synechococus growth. For the final evaluation of the tested PBR there were series of test cultivations run under different conditions of illumination. The highest final concentration of the biomass of tested cyanobacteria reached the relatively high value of 4.38 g/dm3 of the dry biomass, although the process conditions were not fully optimized. The laboratory photobioreactor PBR-2S proved to be a good tool for investigations of microalgae cultivation processes. The presented results and practical observations may help to analyze and understand the mutual influence of the specific process parameters in the described PBR, especially during autotrophic organism cultivations.
Rocznik
Strony
457--–473
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
  • Technical University of Lodz, Department of Bioprocess Engineering, Wólczańska 213, 90-924 Lodz, Poland
  • Technical University of Lodz, Department of Bioprocess Engineering, Wólczańska 213, 90-924 Lodz, Poland
  • Technical University of Lodz, Department of Bioprocess Engineering, Wólczańska 213, 90-924 Lodz, Poland
Bibliografia
  • 1. Akpolat O., Eristurk S., 2008. Some physical parameters to affect the production of H. pluvialis. J. Appl. Sci., 8, 763–771. DOI: 10.3923/jas.2008.763.771.
  • 2. Babcock R.W., Malda J., Radway J.C., 2002. Hydrodynamics and mass transfer in a tubular air-lift photobioreactor. J. Appl. Phycol., 14, 169–184. DOI: 10.1023/A:1019924226457.
  • 3. Batan L.Y., Graff G.D., Bradley T.H., 2016. Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system. Bioresour. Technol., 219, 45–52. DOI: 10.1016/j.biortech.2016.07.085.
  • 4. Berenguel M., Rodríguez F., Acién F.G., García J.L., 2004. Model predictive control of pH in tubular photobioreactors. J. Process Control, 14, 377–387. DOI: 10.3182/20100707-3-BE-2012.0046.
  • 5. Bergmann P., Troesch W., 2016. Repeated fed-batch cultivation of Thermosynechococcus elongatus BP-1 in flatpanel airlift photobioreactors with static mixers for improved light utilization: Influence of nitrate, carbon supply and photobioreactor design. Algal Res., 17, 79–86. DOI: 10.1016/j.algal.2016.03.040.
  • 6. Bosca C., Dauta A., Marvalin O., 1991. Intensive outdoor algal cultures: How mixing enhances the photosynthetic production rate. Bioresour. Technol., 38, 185–188. DOI: 10.1016/0960-8524(91)90152-A.
  • 7. Brown A.R., Jones N.P., Middleton C.J., Papadopoulos G., Arik E.B., 2004. Experimental methods, In: Paul L.E., Atiemo-Obeng A.V., Kresta M.S., (Eds.), Handbook of industrial Mixing. Science and practice. John Wiley & Sons, Hoboken, New Jersey (Chapter 4).
  • 8. Camacho Rubio F., Acién Fernández .., Sánchez Pérez J.., GarcíaCamacho F., Molina Grima E., 1999. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol. Bioeng., 62, 71–86. DOI: 10.1002/(SICI)1097-0290(19990105)62:1<71::AID-BIT9>3.0.CO;2-T.
  • 9. Chisti Y., 1989. Airlift bioreactors. Elsevier, London, UK.
  • 10. Chisti Y., 2007. Biodiesel from microalgae. Biotechnol. Adv., 25, 294–306. DOI: 10.1016/j.biotechadv.2007.02.001.
  • 11. Choon Gek Khoo, Man Kee Lam, Keat Teong Lee, 2016. Pilot-scale semi-continuous cultivation of microalgae Chlorella vulgaris in bubble column photobioreactor (BC-PBR): Hydrodynamics and gas-liquid mass transfer study. Algal Res., 15, 65–76. DOI: 10.1016/j.algal.2016.02.001.
  • 12. Daroch M., Shao C., Liu Y., Geng S., Cheng J.J., 2013. Induction of lipids and resultant FAME profiles of microalgae from coastal waters of Pearl River Delta. Bioresour. Technol., 146, 192–199. DOI: 10.1016/j.biortech.2013. 07.048.
  • 13. Dyer D.L., Gafford R.D., 1961. Some characteristics of a thermophilic blue-green alga. Science, 134, 616–617. DOI: 10.1126/science.134.3479.616.
  • 14. Eberly J.O., Ely R.L., 2012. Photosynthetic accumulation of carbon storage compounds under CO2 enrichment by the thermophilic cyanobacterium Thermosynechococcus elongatus. J. Ind. Microbiol. Biotechnol., 39, 843–850. DOI: 10.1007/s10295-012-1092-2.
  • 15. Fereshteh G., Yassaman B., Reza A.M., Zavar A., Hossein M., 2007. Phytoremediation of arsenic by macroalgae: Implication in natural contaminated water Northeast Iran. J. Applied Sci., 7, 1614–1619. DOI: 10.3923/jas.2007.1614.1619.
  • 16. Fernandes B.D., Mota A., Ferreira A., Dragone G., Teixeira J.A., Vicente A.A., 2014. Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chem. Eng. Sci., 117, 445–454. DOI: 10.1016/j.ces.2014.06.043.
  • 17. Gluszcz P., Starzak M., Michalski H., 1988. A kLa identification technique for a dynamic model of the coupled system: air-lift fermenter – oxygen probes. Acta Biotechnol., 8, 125–137. DOI: 10.1002/abio.370080204.
  • 18. Grobbelaar J., Nedbal L. and Tichý V., 1996. Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J. Appl. Phycol., 8, 335–343. DOI: 10.1007/BF02178576.
  • 19. Guo X., Yao L., Huang Q., 2015. Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae. Bioresour. Technol., 190, 189–195. DOI: 10.1016/j.biortech.2015.04.077.
  • 20. Hall D.O., Acién Fernández F.G., Guerrero E.C., Rao K.K., Grima E.M., 2003. Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol. Bioeng., 82, 62–73. DOI: 10.1002/bit.10543.
  • 21. Hsueh H.T., Chu H., Chang C.C., 2007. Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon. Environ. Sci. Technol., 41, 1909–1914. DOI: 10.1021/es0620639.
  • 22. Huang J., Li Y., Wan M., Yan Y., Feng F., Qu X., Wang J., Shen G., Li W., Fan J., Wang W., 2014. Novel flatplate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient. Bioresour. Technol., 159, 8–16. DOI: 10.1016/j.biortech.2014.01.134.
  • 23. Huang J., Ying J., Fan F., Yang Q., Wang J., Li Y., 2016. Development of a novel multi-column airlift photobioreactor with easy scalability by means of computational fluid dynamics simulations and experiments. Bioresour. Technol., 222, 399–407. DOI: 10.1016/j.biortech.2016.09.109.
  • 24. Iluz D., Abu-Ghosh S., 2016. A novel photobioreactor creating fluctuating light from solar energy for a higher light-to-biomass conversion efficiency. Energy Convers. Manage., 126, 767–773. DOI: 10.1016/j.enconman. 2016.08.045.
  • 25. Jacobi A., Ivanova D., Posten C., 2010. Photobioreactors: Hydrodynamics and mass transfer. 11th International Symposium on Computer Applications in Biotechnology. Leuven, Belgium, July 7-9. DOI: 10.3182/20100707-3-BE-2012.0033.
  • 26. Janvanmardian M., Palsson B.O., 1991. High density photoautotrophic algal cultures: design, construction and operation of a novel photo-bioreactor system. Biotechnol. Bioeng., 38, 1182–1189. DOI: 10.1002/bit.260381010.
  • 27. Kazim S.A., 2012. Experimental and empirical correlations for the determination of the overall volumetric mass transfer coefficients of carbon dioxide in stirred tank bioreactors. MSc thesis University of Ontario. Available at: https://ir.lib.uwo.ca/etd/815.
  • 28. Knuckey R.M., Brown M.R., Robert R., Frampton D.M.F., 2006. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult. Eng., 35, 300–313. DOI: 10.1016/j.aquaeng.2006. 04.001.
  • 29. Kwietniewska E., Tys J., Krzemi´nska I., KoziełW., 2012. Microalgae – cultivation and application of biomass as a source of Energy: A review. Acta Agrophysica Monographiae, 2, 1–108.
  • 30. Lan C.Q., Wang B., 2010. Microalgae for biofuel production and CO2 sequestration. Nova Science Publishers, Hauppauge, NY.
  • 31. Lichtenthaler H.K., Buschmann C., 2005. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy, In: Handbook of Food Analytical Chemistry. John Wiley & Sons, Inc., Hoboken, New Jersey. 2–2, 171–178.
  • 32. LuW.J., Hwang S.J., Chang C.M., 1995. Liquid velocity and gas hold up in three-phase internal loop airlift reactors with low density particles. Chem. Eng. Sci., 50, 1301–1310. DOI: 10.1016/0009-2509(95)98842-3.
  • 33. Massart A., Mirisola A., Lupant D., Thomas D., Hantson A-L., 2014. Experimental characterization and numerical simulation of the hydrodynamics in an air-lift photobioreactor for microalgae cultures. Algal Res., 6B, 210–217. DOI: 10.1016/j.algal.2014.07.003.
  • 34. Mena P., Ferreira A., Teixeira J.A., Rocha F., 2011. Effect of some solid properties on gas–liquid mass transfer in a bubble column. Chem. Eng. Proc., 50, 181–188. DOI: 10.1016/j.cep.2010.12.013.
  • 35. Mills D.B., Bar R., Kirwan D.J., 1987. Effect of solids on oxygen transfer in agitated three-phase systems. AIChE J., 33, 1542–1549. DOI: 10.1002/aic.690330914.
  • 36. Nelson J.A., Bugbee B., 2014. Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLOS ONE, 9(6), e99010. DOI: 10.1371/journal.pone.0099010.
  • 37. Posten C., 2009. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci., 9, 165–177. DOI: 10.1002/elsc.200900003.
  • 38. Pruvost J., Pottier L., Legrand J., 2006. Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor. Chem. Eng. Sci., 61, 4476–4489. DOI: 10.1016/j.ces.2006.02.027. Razzak S.A., Al-Aslani I., Hossain M.M., 2016. Hydrodynamics and mass transfer of CO2 in water in a tubular photobioreactor. Eng. Life Sci., 16, 355–363. DOI: 10.1002/elsc.201500063.
  • 39. Sierra E., Acién F.G., Fernández J.M., García J.L., González C., Molina E., 2008. Characterization of a flat plate photobioreactor for the production of microalgae. Chem. Eng. J., 138, 136–147. DOI: 10.1016/j.cej.2007.06.004.
  • 40. Sobczuk T.M., Camacho F.G., Grima E.M., Chisti Y., 2006. Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioproc. Biosyst. Eng., 28, 243–250. DOI: 10.1007/s00449-005-0030-3.
  • 41. Su C.M., Hsueh H.T., Tseng C.M., Ray D.T., Shen Y.H., Chu H., 2017. Effects of nutrient availability on the biomass production and CO2 fixation in a flat plate photobioreactor. Aerosol Air Qual. Res., 17, 1887–1897. DOI: 10.4209/aaqr.2016.09.0386.
  • 42. Tang J., Jiang D., Luo Y., Liang Y., Li L., Shah M.M.R., Daroch M., 2018. Potential new genera of cyanobacterial strains isolated from thermal springs of Western Sichuan, China. Algal Res., 41, 14–20. DOI: 10.1016/j.algal. 2018.01.008.
  • 43. Tobajas M., Siegel M.C., Apitz S.E., 1999. Influence of geometry and solids concentration on the hydrodynamics and mass transfer of a rectangular airlift reactor for marine sediment and soil bioremediation. Can. J. Chem. Eng., 77, 660–669. DOI: 10.1002/cjce.5450770406.
  • 44. Ugwu C.U., Ogbonna J.C., Tanaka H., 2003. Design of static mixers for inclined tubular photobioreactors. J. Appl. Phycol., 15, 217–223. DOI: 10.1023/A:1023837400050.
  • 45. Ugwu C.U., Aoyagi H., Uchiyama H., 2008. Photobioreactors for mass cultivation of algae. Bioresour. Technol., 99, 4021–4028. DOI: 10.1016/j.biortech.2007.01.046.
  • 46. Vasumathi K.K., Premalatha M., Subramanian P., 2012. Parameters influencing the design of photobioreactors for the growth of microalgae. Renewable Sustainable Energy Rev., 16, 5443–5450. DOI: 10.1016/j.rser.2012.06.013.
  • 47. Vaz B.S., Moreira J.B., de Morais M.G., Costa J.A.V., 2016. Microalgae as a new source of bioactive compounds in food supplements. Curr. Opin. Food Sci., 7, 73–77. DOI: 10.1016/j.cofs.2015.12.006.
  • 48. Wang B., Lan C.Q., 2011. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour. Technol., 102, 5639–5644. DOI: 10.1016/j.biortech.2011.02.054.
  • 49. Wang B., Lan C.Q., Horsman M., 2012. Closed photobioreactors for production of microalgal biomasses. Biotechnol. Adv., 30, 904–912. DOI: 10.1016/j.biotechadv.2012.01.019.
  • 50. Yan N., Fan C., Chen Y., Hu Z., 2016. The potential for microalgae as bioreactors to produce pharmaceuticals. Int. J. Mol. Sci., 17, 962. DOI: 10.3390/ijms17060962.
  • 51. Yoshihara K., Nagase H., Eguchi K., Hirata K., Miyamoto K., 1996. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J. Ferment. Bioeng., 82, 351–354. DOI: 10.1016/0922-338X(96)89149-5.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-640ef5ed-4df2-43b7-ae59-6a318f553ef9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.