PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Analysis of The Effect of Hydrodynamics and Operating Conditions on Biodiesel Synthesis in a Rotor-Stator Spinning Disk Reactor

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated in the present research. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are injected into the reactor from centres of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction multicomponent transport model with the CFD software ANSYS©Fluent v. 13.0. Effect of operating conditions on TG conversion is particularly investigated. Simulation results indicate that there is occurrence of back flow close to the stator at the outlet zone. Small gap size and fast rotational speed generally help to intensify mixing among reagents, and consequently enhance TG conversion. However, increasing rotational speed of spinning disk leads to more backflow, which decreases TG conversion. Large flow rate of TG at inlet is not recommended as well because of the short mean residence time of reactants inside the reactor.
Rocznik
Strony
265--281
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, 90-924 Łódź, Wólczańska 213, Poland
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, 90-924 Łódź, Wólczańska 213, Poland
Bibliografia
  • 1. Batchelor G., 1951. Note on a class of solutions of the Navier–Stokes equations representing steady rotationallysymmetric flow. Mech. Appl. Math., 4, 29–41. DOI: 10.1093/qjmam/4.1.29.
  • 2. Bodewadt U.T., 1940. Die Drehströmung über dem festem Gründe. Z. Angew. Math. Mech., 20, 241–253.DOI: 10.1002/zamm.19400200502.
  • 3. Brady J., Durlofsky L., 1987. On rotating disk flow. Fluid Mech., 175, 363–394. DOI: 10.1017/S0022112087000430.
  • 4. Brechtelsbauer C., Lewis N., Oxley P., Ricard F., Ramshaw C., 2001. Evaluation of a spinning disc reactor for continuous processing. Org. Process Res. Dev., 5, 65-68. DOI: 10.1021/op0000834.
  • 5. Cafiero L.M., Baffi G., Chianese A., Jachuck R.J., 2002. Process intensification: precipitation of barium sulphate using a spinning disc reactor. Ind. Eng. Chem. Res., 41, 5240-5246. DOI: 10.1021/ie010654w.
  • 6. Clifford Y.T, Wang Y.H., Tai C.T., Liu H.S., 2009. Preparation of silver nanoparticles using a spinning disk reactor in a continuous mode. Ind. Eng. Chem. Res., 48, 10104–10109. DOI: 10.1021/ie9005645.
  • 7. Cussler E.L., 1997. Diffusion: Mass transfer in fluid systems. 2nd edition. Cambridge University Press, NewYork, 111-120.
  • 8. Daily J.W., Nece R.E., 1960. Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. Basic Eng., 82, 217–232. DOI: 10.1115/1.3662532.
  • 9. De Beer M.M., Keurentjes J.T.F., Schouten J.C., van der Schaaf J., 2014. Engineering model for single-phase flow in a multi-stage rotor–stator spinning disc reactor. Chem. Eng. J., 242, 53–61. DOI 10.1016/j.cej.2013.12.052.
  • 10. Djaoui M., Dyment A., Debuchy R., 2001. Heat transfer in a rotor–stator system with a radial inflow. Eur. J. Mech. – B/Fluids, 20, 371–398. DOI: 10.1016/S0997-7546(01)01133-5.
  • 11. Egbuna S.O, Ozonoh M, Aniokete T.C., 2013. Diffusion rate analysis in palm kernel oil extraction using
  • 12. differentextraction solvents. IJRET, 02, 639-648. DOI: 10.15623/ijret.2013.0211098.
  • 13. Freedman B., Pryde E.H., Mounts T.L., 1984. Variables affecting the yields of fatty esters from transesterified
  • 14. vegetable oils. J. Am. Oil Chem. Soc., 61, 1638-1643. DOI: 10.1007/BF02541649.
  • 15. Freedman B., Butterfield R.O., Pryde E.H., 1986. Transesterification kinetics of soybean oil. J. Am. Oil Chem. Soc., 63, 1375-1380. DOI: 10.1007/BF02679606.
  • 16. Haddadi S., Poncet S., 2008. Turbulence modelling of torsional Couette flows. Int. J. Rotating Mach., 2008, 635138. DOI: 10.1155/2008/635138.
  • 17. Lopez J., 1998. Characteristics of endwall and sidewall boundary layers in a rotating cylinder with a differentially rotating endwall. Fluid Mech., 359, 49–79.DOI: 10.1017/S002211209700829X.
  • 18. Noureddini H., Zhu D., 1997. Kinetics of transesterification of soybean oil. J. Am. Oil Chem. Soc., 74, 1457-1463. DOI: 10.1007/s11746-997-0254-2.
  • 19. Phadke U., Owen J.M., 1988. Aerodynamic aspects of the sealing of gas-turbine rotor–stator systems. Part 1: The behavior of simple shrouded rotating-disk systems in a quiescent environment. Int. J. Heat Fluid Flow, 9, 98–105. DOI: 10.1016/0142-727X(88)90060-4.
  • 20. Poncet S., Chauve M.P., Le Gal P., 2005a. Turbulent rotating disk flow with inward throughflow. Fluid Mech., 522, 253–262. DOI: 10.1017/S0022112004002046.
  • 21. Poncet S., Chauve M.P., Schiestel R., 2005b. Batchelor versus Stewartson flow structures in a rotor–stator cavity with throughflow. Phys. Fluids, 17, 075110. DOI: 10.1063/1.1964791.
  • 22. Przybylski R., 2007. Canola oil: Physical and chemical properties. Canola council of Canada. Available at: http://www.canolacouncil.org/media/515239/canola_oil_physical_chemical_properties_1.pdf.
  • 23. Qiu Z.Y., 2010. Intensification of liquid-liquid contacting processes. PhD Thesis, University of Kansas.
  • 24. Qiu Z.Y., Petera J., Weatherley L.R., 2012. Biodiesel synthesis in an intensified spinning disc reactor. Chem. Eng.J., 210, 597-609. DOI: 10.1016/j.cej.2012.08.058.
  • 25. Richardson, P. D., 1963. Heat and mass transfer in turbulent separated flows. Chem. Eng. Sci., 18: 149 –155.
  • 26. Rudniak L., Machniewski P.M., Milewska A., Molga E., 2004. CFD modelling of stirred tank chemical reactors: homogeneous and heterogeneous reaction systems. Chem. Eng. Sci., 59, 5233–5239.
  • 27. Rusconi R., Stone H.A., 2008. Shear-induced diffusion of platelike particles in microchannels. Phys. Rev. Lett., 101, 254502. DOI: 10.1103/PhysRevLett.101.254502.
  • 28. Sandoval-Robles J.G., Riba J.P., Couderc J. P., 1980. Mass transfer around a sphere. Trans IChemE, 58, 132–134.
  • 29. SAS IP, Inc., 2010. ANSYS©Fluent v.13.0 Theory Guide.
  • 30. Soo S.L., 1958. Laminar flow over an enclosed rotating disk. Trans. ASME, 80, 287–296.
  • 31. Stewartson K., 1953. On the flow between two rotating coaxial disks. Math. Proc. Camb. Phil. Soc. 49, 333–341. DOI: 10.1017/S0305004100028437.
  • 32. Von Kármán T., 1921. Über laminare und turbulente Reibung. Z. Angew. Math. Mech., 1(4), 233–252. DOI: 10.1002/zamm.19210010401.
  • 33. Wen Z., Petera J., 2015. CFD Numerical simulation of biodiesel synthesis in a spinning disc reactor. Chem. Process Eng., 36, 21–37. DOI: 10.1515/cpe-2015-0002.
  • 34. Zhou W., Bookcock D.G.B., 2006. Phase distributions of alcohol, glycerol, and catalyst in the transesterification of soybean oil. J. Am. Oil Chem. Soc., 83, 1047-1052. DOI: 10.1007/s11746-006-5161-4.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64099aae-441c-4561-b3b6-61de60f4478d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.