PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spektroskopia NIR - modelowanie kwantowo-mechaniczne widm jako narzędzie w badaniach podstawowych i wsparcie zastosowań analitycznych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
NIR spectrometry - spectra simulation as a potent tool in basic research and analytical applications
Języki publikacji
PL
Abstrakty
EN
Near-infrared (NIR) spectroscopy is a powerful technique that has been extensively used for the qualitative and quantitative analysis of a broad range of chemical compounds in various fields, such as pharmaceuticals, food, and environmental monitoring. However, the interpretation of NIR spectra is often challenging due to the complex line shape and overlapping signals that make it difficult to assign the bands to specific molecular vibrations. In recent years, significant advancements in theoretical methods have enabled the calculation of NIR spectra for a variety of molecules, paving the way for the integration of computational chemistry and NIR spectroscopy. This emerging field offers a wealth of opportunities to improve our understanding of the spectral features and to provide detailed molecular fingerprints that are essential for fundamental research and practical applications. Accurate simulation of NIR bands unlocks new potential in exploring the solvent effect or intermolecular interactions, in which cases interpreted overtones and combination bands provide unique information, complementary to that extracted from the fundamental bands observed in mid-infrared (MIR) region. In the area of applications, by reproducing the spectra of molecules with complex structures, theoretical calculations can provide new physical insights into the nature of the vibrational modes that contribute to the spectral signals. This knowledge can be used to improve the accuracy and reliability of chemometric models that are commonly used in quantitative analysis.
Rocznik
Strony
719--743
Opis fizyczny
Bibliogr. 80 poz., rys., tab., wykr.
Twórcy
  • University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innrain 80-82, 6020 Innsbruck, Austria
  • University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innrain 80-82, 6020 Innsbruck, Austria
Bibliografia
  • [1] Y. Ozaki, C.W. Huck, K.B. Beć, Near-IR spectroscopy and its applications in V.P. Gupta (Ed.), Molecular and laser spectroscopy. Advances and applications, San Diego, Calif.: Elsevier, 2018, p. 11–38.
  • [2] C.W. Huck, K.B. Beć, J. Grabska, Near infrared spectroscopy in natural product research in R.A. Meyers (Ed.), Encyclopedia of analytical chemistry: applications, theory and instrumentation, John Wiley & Sons, 2020, p. 1-29.
  • [3] H.W. Siesler, Y. Ozaki, S. Kawata, H.M. Heise, Near-infrared spectroscopy: Principles, Instruments, Applications, Wiley-VCH, Weinheim, Germany, 2002.
  • [4] V. Baeten, P. Dardenne, Application of NIR in agriculture in Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen (Ed.), Near-infrared spectroscopy, Springer, Singapore, 2021, p. 331-345.
  • [5] R. Pandiselvam, N.U. Sruthi, A. Kumar, A. Kothakota, R. Thirumdas, S.V. Ramesh, D. Cozzolino, Food Rev. Int. 2021.
  • [6] Y. Ozaki, W.F. McClure, A.A. Christy, Near infrared spectroscopy in food science and technology, Wiley Interscience, New York, 2006.
  • [7] M. Manley, P.J. Williams, Applications: food science in Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen (Eds.), Near-infrared spectroscopy, Springer, Singapore, 2021, p. 347-359.
  • [8] D. Cozzolino, Molecules 2021, 26, 6981.
  • [9] A. Aït-Kaddour, A. Hassoun, C. Bord, E. Schmidt-Filgueras, A. Biancolillo, F. Di Donato, H. Tumay Temiz, D. Cozzolino, Food Bioprocess Technol. 2021, 14, 781-803.
  • [10] D. Cozzolino, Food Anal. Methods 2022, 15, 1390-1396.
  • [11] B. Igne, E.W. Ciurczak, Near-infrared spectroscopy in the pharmaceutical industry in Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen (Eds.), Near-infrared spectroscopy, Springer, Singapore, 2021, p. 391-412
  • [12] E.W. Ciurczak, J.K. Drennen, III, Pharmaceutical and medical applications of near-infrared spectroscopy, CRC Press, Boca Raton, 2002.
  • [13] K.B. Beć, J. Grabska, C.W. Huck, J. Pharm. Biomed. Anal. 2020, 193, 113686.
  • [14] L. Yin, J. Zhou, D. Chen, T. Han, B. Zheng, A. Younis, Q. Shao, Spectrochim. Acta A 2019, 221, 117208.
  • [15] M.F. Dupont, A. Elbourne, D. Cozzolino, J. Chapman, V.K. Truong, R.J. Crawford, K. Latham, Anal. Methods 2020, 12, 4597-4620.
  • [16] J. Grabska, K.B. Beć, C.W. Huck, Current and future applications of IR and NIR spectroscopy in ecology, environmental studies, wildlife and plant investigations in Cozzolino, D. (Ed.), Comprehensive analytical chemistry. Infrared Spectroscopy for Environmental Monitoring, Vol. 98, 2022, p. 45-76.
  • [17] H. Yan, H.W. Siesler, Appl. Spectrosc. 2018, 72, 1362-1370.
  • [18] H. Yan, H.W. Siesler, J. Near Infrared Spectrosc. 2018, 26, 311-321.
  • [19] T. Scherzer, Applications of NIR techniques in polymer coatings and synthetic textiles, in Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, (Eds.), Near-infrared spectroscopy, Springer, Singapore, 2021, p. 475–516.
  • [20] K.B. Beć, J. Grabska, C.W. Huck, Molecules 2020, 25, 2948.
  • [21] M. Ishigaki, Y. Ozaki, Near-infrared spectroscopy and imaging in protein research Vibrational Spectroscopy in Protein Research. From Purified Proteins to Aggregates and Assemblies, Academic Press, 2020, p. 143-176.
  • [22] Y. Ozaki, C.W. Huck, M. Ishigaki, D. Ishikawa, A. Ikehata, H. Shinzawa, Encyclopedia of Biophysics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2018, p. 1-19.
  • [23] V.R. Kondepati, H.M. Heise, J. Backhaus, Anal. Bioanal. Chem. 2008, 390, 125-139.
  • [24] H.M. Heise, Medical applications of NIR spectroscopy in Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen (Eds.), Near-infrared Spectroscopy, Springer, Singapore, 2021, p. 437-473.
  • [25] A. Sakudo, Clinica Chimica Acta 2016, 455, 181-188.
  • [26] K.B. Beć, J. Grabska, G.K. Bonn, M. Popp, C.W. Huck, Front. Plant Sci. 2020, 11, 1226.
  • [27] M.A. Czarnecki, Y. Morisawa, Y. Futami, Y. Ozaki, Chem. Rev. 2015, 115, 9707-9744.
  • [28] M.A. Czarnecki, Y. Morisawa, Y. Katsumoto, T. Takaya, S. Singh, H. Sato, Y. Ozaki, Phys. Chem. Chem. Phys. 2021, 23, 19188-19194.
  • [29] K.B. Beć, J. Grabska, C.W. Huck, Y. Ozaki, Quantum mechanical simulation of near-infrared spectra. Applications in physical and analytical chemistry in Y. Ozaki, M.J. Wójcik, J. Popp (Eds.), Molecular spectroscopy: A quantum chemistry approach, Vol. 2, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2019, p. 353-388.
  • [30] M.A. Czarnecki, K.B. Beć, J. Grabska, T.S. Hofer, Y. Ozaki Overview of application of NIR spectroscopy to physical chemistry in Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen (Eds.), Near-infrared Spectroscopy, Springer, Singapore, 2021, p. 297-330.
  • [31] K.B. Beć, J. Grabska, C.W. Huck, Spectrochim. Acta A 2021, 254, 119625.
  • [32] K.B. Beć, J. Grabska, N. Plewka, C.W. Huck, Molecules 2021, 26, 6390.
  • [33] S. Mayr, K.B. Beć, J. Grabska, V. Wiedemair, V. Pürgy, M.A. Popp, G.K. Bonn, C.W. Huck, Spectrochim. Acta A 2021, 249, 119342.
  • [34] K.B. Beć, J. Grabska, C.W. Huck, Near-infrared (NIR) sensors in environmental analysis in Narayan, R. (Ed.), Encyclopedia of Sensors and Biosensors, Vol. 4, Elsevier, 2023, p. 484-503.
  • [35] L.G. Weyer, S.C. Lo, Spectra-structure correlations in the near-infrared in J.M. Chalmers, P.R. Griffiths, (Eds.), Handbook of vibrational spectroscopy, Wiley, Chichester, 2002, Vol. 3, p. 1817-1837.
  • [36] K.B. Beć, J. Grabska, Y. Ozaki, Advances in anharmonic methods and their applications to vibrational spectroscopies in M.J. Wójcik, H. Nakatsuji, B. Kirtman, Y. Ozaki (Eds.), Frontiers of quantum chemistry, Springer Singapore, Singapore, 2018, p. 483-512.
  • [37] K.B. Beć, C.W. Huck, Front. Chem. 2019, 7, 48.
  • [38] L. Ma, Y. Peng, Y. Pei, J. Zeng, H. Shen, J. Cao, Y. Qiao, Z. Wu, Sci. Rep. 2019, 9, 9503.
  • [39] J. Workman, Jr., L. Weyer, (Eds.), Practical guide to interpretive near-infrared spectroscopy, CRC press, Boca Raton, 2007.
  • [40] K.B. Beć, J. Grabska, C.W. Huck, Physical principles of infrared spectroscopy in Cozzolino, D. (Ed.), Comprehensive analytical chemistry. Infrared Spectroscopy for Environmental Monitoring, Vol. 98, 2022, p. 1-43.
  • [41] J. Bloino, M. Biczysko, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2015.
  • [42] V. Barone, S. Alessandrini, M. Biczysko, J.R. Cheeseman, D.C. Clary, A.B. McCoy, R.J. DiRisio, F. Neese, M. Melosso, C. Puzzarini, Nat. Rev. Methods Primers 2021, 1, 38.
  • [43] Y. Ozaki, K.B. Beć, Y. Morisawa, S. Yamamoto, I. Tanabe, C.W. Huck, T.S. Hofer, Chem. Soc. Rev. 2021, 50, 10917-10954.
  • [44] J. Bloino, A. Baiardi, M. Biczysko, Int. J. Quantum Chem. 2016, 116, 1543-1574.
  • [45] S. Singh, R. Szostak, M.A. Czarnecki, J. Mol. Liq. 2021, 336, 116277.
  • [46] K.B. Beć, Y. Futami, M.J. Wójcik, Y. Ozaki, Phys. Chem. Chem. Phys. 2016, 18, 13666-13682.
  • [47] J. Grabska, K.B. Beć, Y. Ozaki, C.W. Huck, J. Phys. Chem. A 2017, 121, 1950-1961.
  • [48] K.B. Beć, J. Grabska, M.A. Czarnecki, Spectrochim. Acta A 2018, 197, 176-184.
  • [49] K.B. Beć, D. Karczmit, M. Kwaśniewicz, Y. Ozaki, M.A. Czarnecki, J. Phys. Chem. A 2019, 123, 4431-4442.
  • [50] K.B. Beć, J. Grabska, C.W. Huck, S. Mazurek, M.A. Czarnecki, Molecules 2021, 26, 6779.
  • [51] K.B. Beć, J. Grabska, C.G. Kirchler, C.W. Huck, J. Mol. Liq. 2018, 268, 895-902.
  • [52] J. Grabska, K.B. Beć, Y. Ozaki, C.W. Huck, Molecules 2021, 26, 5212.
  • [53] K.B. Beć, J. Grabska, Y. Ozaki, M.A. Czarnecki, C.W. Huck, Sci. Rep. 2019, 9, 17398.
  • [54] K.B. Beć, Y. Futami, M.J. Wójcik, T. Nakajima, Y. Ozaki, J. Phys. Chem. A 2016, 120, 6170-6183.
  • [55] J. Grabska, M. Ishigaki, K.B. Beć, M.J. Wójcik, Y. Ozaki, J. Phys. Chem. A 2017, 121, 3437-3451.
  • [56] J. Grabska, K.B. Beć, M. Ishigaki, C.W. Huck, Y. Ozaki, J. Phys. Chem. B 2018, 122, 6931-6944.
  • [57] K.B. Beć, J. Grabska, J. Badzoka, C.W. Huck, Spetrochim. Acta A 2021, 262, 120085.
  • [58] J. Grabska, NIR News 2021, 32, 7-14.
  • [59] G. Bázár, Z. Kovacs, M. Tanaka, A. Furukawa, A. Nagai, M. Osawa, Y. Itakura, H. Sugiyama, R. Tsenkova, Anal. Chim. Acta 2015, 896, 52-62.
  • [60] K.B. Beć, J. Grabska, C.W. Huck, Chem. Eur. J. 2021, 27, 1514-1532.
  • [61] K.B. Beć, J. Grabska, H.W. Siesler, C.W. Huck, NIR News 2020, 31, 28-35.
  • [62] R.A. Crocombe, App. Spectr. 2018, 72, 1701-1751.
  • [63] J. Grabska, K.B. Beć, S. Mayr, C.W. Huck, App. Spectr. 2021, 75, 1022-1032.
  • [64] K.B. Beć, J. Grabska, T.S. Hofer, Introduction to quantum vibrational spectroscopy in Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen (Eds.), Near-infrared spectroscopy, Springer, Singapore, 2021, p. 83-110.
  • [65] U. Kuenzer, T.S. Hofer, Chem. Phys. 2019, 520, 88-99.
  • [66] T.K. Roy, R.B. Gerber, Phys. Chem. Chem. Phys. 2013, 15, 9468-9492.
  • [67] Q. Yu, J.M. Bowman, J. Phys. Chem. A 2020, 124, 1167-1175.
  • [68] W.B. Carpenter, Q.i. Yu, J.H. Hack, B. Dereka, J.M. Bowman, A. Tokmakoff, J. Chem. Phys. 2020, 153, 124506.
  • [69] B. Temelso, G.C. Shields, J. Chem. Theory Comput. 2011, 7, 2804-2817.
  • [70] V. Barone, J. Chem. Phys. 2005, 122, 014108.
  • [71] J. Grabska, M.A. Czarnecki, K.B. Beć, Y. Ozaki, J. Phys. Chem. A 2017, 121, 7925-7936.
  • [72] K.B. Beć, J. Grabska, C.W. Huck, M.A. Czarnecki, Molecules 2019, 24, 2189.
  • [73] C.G. Kirchler, C.K. Pezzei, K.B. Beć, S. Mayr, M. Ishigaki, Y. Ozaki, C.W. Huck, Analyst 2017, 142, 455-464.
  • [74] J. Grabska, K.B. Beć, M. Ishigaki, M.J. Wójcik, Y. Ozaki, Spectrochim. Acta A 2017, 185, 35-44.
  • [75] K.B. Beć, J. Grabska, C.W. Huck, M.A. Czarnecki, J. Mol. Liq. 2020, 310, 113271.
  • [76] K.B. Beć, J. Grabska, C.W. Huck, Anal. Chim. Acta 2020, 1133, 150-177.
  • [77] K. Czamara, K. Majzner, M.Z. Pacia, K. Kochan, A. Kaczor, M. Baranska, J. Raman Spectrosc. 2015, 46, 4-20.
  • [78] E. Wiercigroch, E. Szafraniec, K. Czamara, M.Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, K. Malek, Spectrochim. Acta A 2017, 185, 317-335.
  • [79] S. Mayr, K.B. Beć, J. Grabska, E. Schneckenreiter, C.W. Huck, Talanta 2021, 223, 121809.
  • [80] M. Ishigaki, A. Ito, R. Hara, S.-I. Miyazaki, K. Murayama, K. Yoshikiyo, T. Yamamoto, Y. Ozaki Anal. Chem. 2021, 93, 2758-2766.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64044abc-fcb8-45f9-a740-7649d615486e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.