PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving the Adhesion Strength of Polypropylene Nonwoven Laminated Fabrics Using Low-Pressure Plasma

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie właściwości fizycznych i geometrycznych dzianin pojedynczych lewo-prawych z udziałem przędz rdzeniowych elastomerowych
Języki publikacji
EN
Abstrakty
EN
In this study, the adhesion strength properties of laminated polypropylene nonwoven fabrics treated with low-temperature, low-pressure, radio frequency argon plasma were investigated. The change in wettability was determined by water contact angle measurements. In order to observe the effect of plasma treatment on the washing resistance of the laminated samples, washing treatment by means of 10 wash cycles was also carried out. After the peel-off test, the remaining adhesives on the peeled surfaces were examined by SEM images in order to see the effect of plasma treatment. Contact angles of highly hydrophobic polypropylene nonwoven samples decreased by increasing the plasma exposure time and discharge power. The peel bond strength of the plasma treated laminated fabrics improved by up to 150% compared to the untreated fabrics. SEM and AFM analyses also showed that the surface roughness increased due to the etching effect of the plasma treatment, leading to the improvement of the mechanical adhesion of the polypropylene nonwoven fabrics.
PL
Głównym celem badań była ocena możliwości zastosowania przy produkcji dzianin na maszynach cylindrycznych bawełnianych przędz rdzeniowych elastomerowych jako alternatywę dla stosowania gołych przędz elastomerowych. Badano również wpływ długości splotu na geometrie i jakość dzianin, w tym na gęstość rządków i kolumienek, gęstość splotów i gęstość powierzchniową przy rożnych stanach relaksacji. Uzyskane wyniki wyraźnie wskazują, że proponowana przędza nadaje się jak najbardziej do projektowanego zastosowania. Stwierdzono również, że zmiany długości splotu nie mają wyraźnego wpływu na gęstość kolumienkową. Jednocześnie stwierdzono, że geometryczne właściwości próbek są odwrotnie proporcjonalne do długości splotu. Badano również zdolność próbek do osiągnięcia geometrycznej równowagi po kolejnych powtarzanych cyklach prania i suszenia. Stwierdzono, że wszystkie wyprodukowane próbki uzyskiwały stabilność wymiarową przed piątym cyklem prania i suszenia, w tym również te, które miały najmniejszą długość splotu.
Rocznik
Strony
96--101
Opis fizyczny
Bibliogr. 34 poz., rys, tab.
Twórcy
  • Department Textile Engineering, Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul, Turkey
  • Department Textile Engineering, Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul, Turkey
  • Department Textile Engineering, Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul, Turkey
autor
  • Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
Bibliografia
  • 1. Masaeli E, Morshed M, Tavanai H. Study of the wettability properties of polypropylene nonwoven mats by low-pressure oxygen plasma treatment. Surf. Interface Anal. 2007; 39: 770-774.
  • 2. Garcia D, Fenollar O, Lopez R, Sanchis R, Balart R. Durability of the wettability properties of a polypropylene film with a low-Pressure CH4–O2 plasma treatment. Journal of Applied Polymer Science 2008; 110: 1201-1207 .
  • 3. Wei QF. Surface characterization of plasma-treated polypropylene fibers. Materials Characterization 2004; 52 (3): 231- 235.
  • 4. Pandiyaraj KN, Selvarajan V, Deshmukh RR, Gao C. Adhesive properties of polypropylene (PP) and polyethylene terephthalate (PET) film surfaces treated by DC glow discharge plasma. Vacuum 2009; 83: 332-339.
  • 5. Wei QF, Wang XQ. AFM characterisation of technical fibres. Journal of Industrial Textiles 2004; 34(1): 51-60.
  • 6. Wei Q, Li Q, Wang X, Huang F, Gao W. Dynamic water adsorption behaviour of plasma-treated polypropylene nonwovens. Polymer Testing 2006; 25(5): 717- 722.
  • 7. Wei Q, Wang Y, Hou D, Huang F. Dynamic wetting of plasma-treated polypropylene nonwovens. Journal of Applied Polymer Science 2007; 104: 2157-2160.
  • 8. Wei QF, Mather RR, Wang XQ, Fotheringham AF. Functional nanostructures generated by plasma-enhanced modification of polypropylene fibre surfaces. Journal of Materials Science 2005; 40: 5387-5392.
  • 9. Lai J, Sunderland B, Xue J, Yan S, Zhao W, Folkard M, Michael BD, Wang Y. Study on hydrophilicity of polymer surfaces improved by plasma treatment. Applied Surface Science 2006; 252(10): 3375- 3379.
  • 10. Hegemann D, Brunner H, Oehr C. Plasma treatment of polymers for surface and adhesion improvement. Nuclear Instruments and Methods in Physics Research B 2003; 208(1-4): 281-286.
  • 11. Wei Q, Xu Q, Cai Y, Wang Y. Evaluation of the interfacial bonding between fibrous substrate and sputter coated copper. Surface & Coatings Technology 2008; 202: 4673–4680.
  • 12. Yaman N, Özdoğan E, Seventekin N. Evaluation of some of the physical properties of atmospheric plasma treated polypropylene fabric. The Journal of The Textile Institute 2010; 101(8): 746-752.
  • 13. Hwang YJ, McCord MG, An JS, Kang BC, Park SW. Effects of helium atmospheric pressure plasma treatment on low-stress mechanical properties of polypropylene nonwoven fabrics. Textile Res. J. 2005; 75(11): 771-778.
  • 14. Morent R, De Geyter N, Gengembre L, Leys C, Payen E, Van Vlierberghe S, Schacht E. Surface treatment of a polypropylene film with a nitrogen DBD at medium pressure. Eur. Phys. J. Appl. Phys. 2008; 43 (3): 289-294.
  • 15. Lee SD, Sarmadi M, Denes E, Shohet JL. Surface Modification of polypropylene under argon and oxygen-RF-plasma conditions. Plasmas and Polymers 1997; 2(3): 177.
  • 16. Černáková L, Szabová R, Wolfová M, Buček A, Černák M. Surface modification of polypropylene nonwoven after plasma activation at Atmospheric pressure. Fibres & Textiles in Eastern Europe 2007; 15, 5-6 (64-65): 121-123.
  • 17. Urbaniak-Domagała W, Wrzosek H, Szymanowski H, Majchrzycka K, Brochocka A. Plasma modification of filter nonwovens used for the protection of respiratory tracts. Fibres & Textiles in Eastern Europe 2010; 18, 6 (83): 94-99.
  • 18. Bulut Y, Sülar V. General properties and performance tests of fabrics produced by coating and lamination techniques. The Journal of Textiles and Engineers 2008; 15 (70/71): 5-16.
  • 19. Wei Q. Surface modification of textiles: Surface modification of textiles by plasma treatments, Cambridge: Woodhead Publishing, 2009.
  • 20. Yaman N, Özdogan E, Seventekin N, Öktem T. Surface Modification Methods for Improvement of Adhesion to Textile Fibers. Tekstil ve Konfeksiyon 2008; 18(2): 89-93.
  • 21. Carlotti S, Mas A. Improvement of Adhesion of PET fibers to rubber by argon- -oxygen plasma treatment. Journal of Applied Polymer Science 1998; 69(12): 2321-2330.
  • 22. Krump H, Simor M, Hudec I, Jasso M, Luyt AS. Adhesion strength study between plasma treated polyester fibres and a rubber matrix. Applied Surface Science 2005; 240 (1-4): 268-274.
  • 23. Krump H, Hudec I, Jasso M, Dayss E, Luyt AS. Physical-morphological and chemical changes leading to an increase in adhesion between plasma treated polyester fibres and a rubber matrix. Applied Surface Science 2006; 252 (12): 4264-4278.
  • 24. Simor, M., Krump, H., Hudec, I., Rahel, J., Brablec, A., Cernak, M. Atmospheric pressure H2O plasma treatment of polyester cord threads. Acta Physica Slovaca 2004; 54 (1): 43-48.
  • 25. Luo S, Van Ooij WJ. surface modification of textile fibers for improvement of adhesion to polymeric matrices: a review. Journal of Adhesion Science and Technology 2002; 16 (13): 1715-1735.
  • 26. Yeh J, Lai Y, Suen M, Chen C. An improvement on the adhesion-strength of laminated ultra HMWPE surface-etching modification using highly effective helium-oxygen-nitrogen plasma treatment. Polym. Adv. Technol. 2011; 22: 1971– 1981.
  • 27. Simor M, Creyghton Y, Wypkema A, Zemek J. The influence of surface DBD plasma treatment on the adhesion of coatings to high-tech textiles. Journal of Adhesion Science and Technology 2010; 24 (1): 77-97.
  • 28. Özdoğan E. The effect of plasma treatment over the adhesion property of polyamide 6 fabrics. Tekstil ve Konfeksiyon 2006; 2: 128-133.
  • 29. ASTM D 2774-07: 2007. Standard test methods for bonded, fused, and laminated apparel fabrics.
  • 30. TS 5720 EN ISO 6330: 2002. Textiles - domestic washing and drying procedures for textile testing.
  • 31. Gowri S, Almeida L, Amorim T, Carneiro N, Souto AP, Esteves MF. Polymer nanocomposites for multifunctional finishing of textiles – a review. Textile Research Journal 2010; 80(13): 1290-1306.
  • 32. Cireli A, Kutlu B, Mutlu M. Surface modification of polyester and polyamide fabrics by low frequency plasma polymerization of acrylic acid. Journal of Applied Polymer Science 2007; 104 (4): 2318–2322.
  • 33. Yousefi HR, Ghoranneviss M, Tehrani AR, Khamseh S. Investigation of glow discharge plasma for surface modification of polypropylene. Surface and Interface Analysis 2003; 35 (12): 1015-1017.
  • 34. Gouveia IC, Antunes LC, Gomes AP. Low-pressure plasma treatment for hydrophilization of poly(ethylene terephthalate) fabrics. Journal of the Textile Institute 2011; 102 (3): 203-213.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6402a32a-c2fa-49bc-b496-da2c24ea2f88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.