Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the active vibration reduction of two-dimensional structures, piezoelectric actuators of regular shapes, e.g. rectangular, circular, are commonly used. However, the shape of the transducers can be irregular, asymmetric (a-PZT), and its geometry can be an object for optimization. The paper presents an experimental validation of the application of optimal shaped a- PZT in the active reduction of triangular plate vibrations. Optimization was based on the criterion of the maximum bending moment. This means that the center of a-PZT is located at the point where the bending moment of the plate has reached its absolute maximum. The isosceles right triangular plate with simply supported edges was chosen as the research object. The research confirms the validity of the criterion used for optimization and may be an introduction to considering the use of optimal a-PZT in the active reduction of vibrations for more complex structures.
Słowa kluczowe
Rocznik
Tom
Strony
563--568
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Rzeszow, Poland
autor
- Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Rzeszow, Poland
Bibliografia
- [1] W. Wang, Electrode shape optimization of piezoelectric transducers. Gainesville, 2003.
- [2] X. Zhang, A. Takezawa, Z. Kang, ”Topology optimization of piezoelectric smart structures for minimum energy consumption under active control,” Structural and Multidisciplinary Optimization, vol. 58, pp. 185–199, 2018. https://doi.org/10.1007/s00158-017-1886-y
- [3] L. Leniowska, D. Mazan, ”MFC Sensors and Actuators in Active Vibration Control of the Circular Plate,” Archives of Acoustics, vol. 40, no. 2, pp. 257-265, 2015. https://doi.org/10.1515/aoa-2015-0028
- [4] J. Rzepecki, A. Chraponska, K. Mazur, S. Wrona, M. Pawełczyk, ”Semi-active reduction of device casing vibration using a set of piezoelectric elements,” in 2019 20th International Carpathian Control Conference (ICCC), 2019, pp. 1-5. https://doi.org/10.1109/CarpathianCC.2019.8765993
- [5] A. Donoso, O. Sigmund, ”Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads,” Structural and Multidisciplinary Optimization, vol. 38, pp. 171–183, 2009. https://doi.org/10.1007/s00158-008-0273-0
- [6] R. Trojanowski, J. Wiciak, ”Impact of the size of the sensor part on sensor-actuator efficiency,” Journal of Theoretical and Applied Mechanics, vol. 58, no. 2, pp. 391-401, 2020. https://doi.org/10.15632/jtam-pl/118948
- [7] R. Trojanowski, J. Wiciak, ”Piezoelectric Square Based Sensor-actuator Hybrid in Vibration Reduction,” Vibrations in Physical Systems, vol. 33, no. 3, 2022. http://doi.org/10.21008/j.0860-6897.2022.3.03
- [8] A. Branski, R. Kuras, ”Asymmetrical PZT Applied to Active Reduction of Asymmetrically Vibrating Beam – Semi-Analytical Solution,” Archives of Acoustics, vol. 47, no. 4, pp. 555–564, 2022. https://doi.org/10.24425/aoa.2022.142891
- [9] A. Branski, R. Kuras, ”PZT Asymmetrical Shape Optimization in Active Vibration Reduction of Triangular Plates,” Archives of Acoustics, vol. 48, no. 3, pp 425-432, 2023. https://acoustics.ippt.pan.pl/index.php/aa/article/view/3740
- [10] S. S. Rao, Vibration of Continuous Systems. Hoboken: John Wiley & Sons Inc., 2007.
- [11] A. W. Leissa, Vibration of plates, Washington: Scientific and Technical Information Division NASA, 1969.
- [12] D. J. Gorman, Vibration analysis of Plates by the Superposition Method. Singapore: World Scientific Publishing Co. Pte. Ltd., 1999.
- [13] D. J. Gorman, ”A highly accurate analytical solution for free vibration analysis of simply supported right triangular plates,” Journal of Sound and Vibration, vol. 89, no. 1, pp. 107–118, 1983. https://doi.org/10.1016/0022-460X(83)90914-8
- [14] H. T. Saliba, ”Transverse free vibration of simply supported right triangular thin plates: a highly accurate simplified solution,” Journal of Sound and Vibration, vol. 139, no. 2, pp. 289–297, 1990. https://doi.org/10.1016/0022-460X(90)90889-8
- [15] H. T. Saliba, ”Free vibration of simply supported general triangular thin plates: an accurate simplified solution,” Journal of Sound and Vibration, vol. 196, no. 1, pp. 45–57., 1996. https://doi.org/10.1006/jsvi.1996.0466
- [16] A. Branski, S. Szela, ”Improvement of effectiveness in active triangular ´ plate vibration reduction,” Archives Of Acoustics, vol. 33, no. 4, pp.521–530, 2008. https://acoustics.ippt.pan.pl/index.php/aa/article/view/549/480
- [17] A. Branski, S. Szela, ”Quasi-optimal PZT distribution in active vibration reduction of the triangular plate with P-F-F boundary conditions,” Archives of Control Sciences, vol 20, no. 2, pp. 209-226, 2010. https://doi.org/10.2478/v10170-010-0014-7
- [18] S.-C. Her, H.-Y. Chen, ”Deformation of Composite Laminates Induced by Surface Bonded and Embedded Piezoelectric Actuators,” Materials, vol. 13, no. 14, 2020. https://doi.org/10.3390/ma13143201
- [19] A. Premount, Vibration Control of Active Structures, Berlin: Springer, 2011.
- [20] R. Kuras, ”Influence of the PZT Actuator Asymmetry on the LQR Control Parameters in the Active Reduction Vibrations of Beams,” Vibrations in Physical Systems, vol. 33, no. 3, 2022. https://doi.org/10.21008/j.0860-6897.2022.3.05
- [21] V. Adams, A. Askenazi, Building Better Products with Finite Element Analysis, Santa Fe: OnWord Press, 1999.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63fb1ec7-9932-4f99-aa92-1b2ea10faf3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.