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Abstract 
 

In this paper we describe an algorithm for solving the pure metals solidification problem by involving the metal shrinkage and air-gap 

between material and mold. In this algorithm we use the finite element method supplemented by the procedures allowing to define the 

position of the moving interface and the change of the material size associated with the shrinkage. We present also an example illustrating 

the precision of presented method. 
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1. Introduction 
 

The Stefan problem [1-3] consists in determining the 

temperature distribution in the liquid and solid phases. 

Simultaneously, the position of boundary between the phases 

should be found as well. In easy cases it is possible to find the 

exact solution of the Stefan problem [4, 5], but generally to find 

its solution the numerical or numerical-analytical methods must 

be used. In paper [6] the Green element method has been 

employed to solve a one-dimensional one-phase Stefan problem 

by adopting an enthalpy formulation. Yoon in paper [7] presents 

the explicit and implicit extended moving least squares difference 

methods for solving one-dimensional Stefan problem. In the paper 

[8] a numerical methodology based on the curvilinear, boundary-

fitted, finite-volume method for solidification and melting 

problems for pure substances based on moving grids is developed. 

Kim in paper [9] present two simple numerical methods to find 

the free boundary in one-phase Stefan problem. He use a log-

transform function with the unfixed and fixed free boundary. Qu 

et all in paper [10] solve one-dimensional phase change problem 

with periodic boundary condition by using an invariant-space-grid 

to finite difference method. The papers [11-15] presents an 

analytic method applied for finding the approximate solution of 

Stefan problem reduced to the one-phase solidification problem. 

Proposed method is based on the known formalism of initial 

extension of a sought function describing the temperature field 

into the power series, some coefficients of which can be 

determined with the aid of boundary conditions, and also based on 

the approximation of a function defining the freezing front 

location with the broken line, parameters of which can be 

obtained by solving the appropriate differential equations. In the 

papers [16-18] to solve the Stefan problem the heat balance 
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method and its’ modifications were used.  Reviews of some trends 

and approaches to the integral method are given in the papers [16, 

19]. Numeric models for the heat transfer problems are considered 

also in papers [20-32].  

Mathematical model for describing processes involving the 

simultaneous heat and mass transfer with the phase transition in 

foods undergoing the volume change (shrinkage or expansion) is 

presented in paper [33]. To approximate solution of the problem 

the finite element method and the Arbitrary Lagrangian-Eulerian 

method were used. Natale et al. in paper [34] determined the 

temperature distribution of the solid and liquid one-dimensional 

regions and the position of the two free boundaries in the 

solidification process with either shrinkage or expansion. The 

results were obtained for three different boundary conditions. In 

all cases, the explicit solution was given by a parametric 

representation of the similarity type. The one-dimensional 

solidification of the pure metals problem involving the metal 

shrinkage was considered also in paper [35]. To find the solution 

the perturbation method for the small Stefan numbers was used. 

In this paper we present a method allowing to find the 

approximate solution of the pure metals solidification problem 

taking into account the metal shrinkage and formulation of the air-

gap between mold and ingot. This method bases on the finite 

elements method extended with procedures that determine the 

position of the boundary between phases and the size of the 

material resulting from the shrinkage. Further we present an 

computational example to illustrate the precision of presented 

method. 

 

 

2. Formulation of the problem 
 

We will consider the solidification of pure metal in mold. In 
our calculations we will involve the change of metal's volume in 
the solid state consequential to the difference between density in 
solid and liquid state. We will take into account the air-gap 
formed between the ingot and mold. To describe the temperature 
distribution we used the Stefan problem. We assumed, that the 
cooling conditions on mold's boundary are described by the third-
type boundary condition. On the contact boundary between mold 
and ingot the fourth-type boundary condition is given. At the 
beginning, before the air-gap is formed, with perfect contact. 
After the formation of air-gap - with thermal resistance. In the 
ingot's axis the heat flux density (the second-type boundary 
condition) is given. 

We will examine the one-dimensional problem. It can be used 
to describe in simplified way the phenomena occurring among 

others inside the solidifying metal slab with height ℎ, length 𝑙 and 

thickness 𝑑(𝑡) ( 𝑑(𝑡) ≪ ℎ and  𝑑(𝑡) ≪ 𝑙 ).  
Let us consider the system of differential equations describing 

the solidification of the pure metal in the mold. The ingot area 

will be represented by the interval Ω𝑚 = (0, 𝑑(𝑡)), that can be 

divided into two subintervals 𝐷1 = (0, 𝜉(𝑡)) and 𝐷2 =
(𝜉(𝑡), 𝑑(𝑡)), representing correspondingly the liquid and the solid 

phase. The mold area will be represented by the interval 𝐷3 =
(𝑑0, 𝑏0), where 𝑑0 and 𝑏0 (0 < 𝑑0 < 𝑏0) are known constants 

while 𝑑(𝑡) and 𝜉(𝑡) ( 0 ≤ 𝜉(𝑡) ≤ 𝑑(𝑡) ≤ 𝑑0 ) are unknown 
functions describing respectively position of the moving interface 

between phases and length of the ingot area. The heat transfer 
equations are given [35]:  

 

𝑐𝑖𝜚𝑖
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝜆𝑖

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
+ 𝑤𝑖 (1 −

𝜚1

𝜚2
)

𝑑𝜉(𝑡)

𝑑𝑡

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
, (1) 

 

for (𝑥, 𝑡) ∈ 𝐷𝑖 × (0, 𝑡∗), 𝑖 =  1, 2, 3 , where 𝑖 =  1 for the liquid 

phase, 𝑖 =  2 for the solid phase and 𝑖 =  3 for the form, 

𝑤1 = 𝑤3 = 0, 𝑤2 = 1, 𝑐𝑖 is the specific heat, 𝜆𝑖 is the thermal 

conductivity coefficient, 𝜚𝑖 denotes density of the corresponding 

phase and 1 −
𝜚1

𝜚2
 is the shrinkage factor.  

On the moving interface the condition of temperature 
continuity and the Stefan condition are defined 

 
𝑢(𝜉(𝑡), 𝑡)+ = 𝑢(𝜉(𝑡), 𝑡)− = 𝑢∗, (2) 

 

𝜅
𝑑𝜉(𝑡)

𝑑𝑡
= 𝜆2

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
|

𝑥=𝜉(𝑡)

+
− 𝜆1

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
|

𝑥=𝜉(𝑡)

−
, (3) 

 

where 𝑢∗ is the phase change temperature and 𝜅 describes the 
latent heat of solidification per volume unit. 

On the boundaries of the ingot and the mold the second and 
third kind boundary conditions are given: 

 

−𝜆1
𝜕𝑢(0,𝑡)

𝜕𝑥
= 𝑞(𝑡), 𝑡 ∈ (0, 𝑡∗), (4) 

 

−𝜆3
𝜕𝑢(𝑏0,𝑡)

𝜕𝑥
= 𝛼(𝑢(𝑏0, 𝑡) − 𝑢∞), 𝑡 ∈ (0, 𝑡∗), (5) 

 

where 𝛼 is the heat transfer coefficient and 𝑢∞ denotes the 
ambient temperature. On the contact boundary between ingot and 
mold the fourth-type condition is given. Before formation of the 
air-gap, with perfect contact: 

 

−𝜆1
𝜕𝑢(𝑑0,𝑡)

𝜕𝑥
|

−
= −𝜆3

𝜕𝑢(𝑑0,𝑡)

𝜕𝑥
|

+
, 𝑡 ∈ (0, 𝑡0), (6) 

 

whereas after the air-gap is formed, with thermal resistance: 

 

−𝜆2
𝜕𝑢(𝑑(𝑡),𝑡)

𝜕𝑥
=

𝑢(𝑑(𝑡),𝑡)− 𝑢(𝑑0,𝑡)

𝑅
= −𝜆3

𝜕𝑢(𝑑0,𝑡)

𝜕𝑥
, 𝑡 ∈ ( 𝑡0, 𝑡∗), (7) 

 

where 𝑅 =
𝜆𝑠

𝑑0−𝑑(𝑡)
  denotes the resistance of the air-gap, 𝜆𝑠 is the 

thermal conductivity coefficient of air-gap, 𝑡0 is the moment of 

the air-gap formation. For the unknown functions 𝑢, 𝜉 and 𝑑 we 
have to give the initial conditions: 

 
𝑢(𝑥, 0) =  𝑢0(𝑥), (8) 

 

𝜉(0) = 𝜉0, (9) 

 

𝑑(0) = 𝑑0, (10) 
 

where 𝑢0, 𝜉0 and 𝑑0 are given. 
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3. Method of solution 
 

In this section we will describe the method of finding the 
solution of the problem given above. First we will present a 
procedure of determining the size of the ingot area.  Further we 
will describe the method of meshing the spatial dimension and 
finding the time step sizes. At the end we will mention the way of 
using the finite elements method in our algorithm. 

Assume, that the ingot has the constant mass equal to the 

initial mass 𝑚0. According to the mass balance the sum of masses 

of the liquid and solid state is equal to 𝑚0, i.e.: 
 

 𝑚𝑠 + 𝑚𝑙 = 𝑚0. (11) 

 

Assuming, that the densities 𝜚1 and 𝜚2 of the solid and liquid 

phases are constant, the above equation takes the form: 

 

𝜚1𝜉(𝑡) + 𝜚2(𝑑(𝑡) − 𝜉(𝑡)) = 𝜚1𝜉0 + 𝜚2(𝑑0 − 𝜉0). (12) 

 

If we additionally assume, that in initial moment the whole ingot 

is in the liquid state (𝜉0 = 𝑑0) we can determine the material 

length function 𝑑(𝑡) as [36]:  

 

𝑑(𝑡) =
𝜚1

𝜚2
(𝑑0 − 𝜉(𝑡)) + 𝜉(𝑡). (13) 

 

In moment 𝑡𝑘 we divide the ingot area to 𝑛𝑚 and the form 

area to 𝑛3 elements, using 𝑛 +  2 (𝑛 =  𝑛𝑚   +  𝑛3 ) nodes: 

 

0 = 𝑥0
𝑘 < ⋯ < 𝑥𝑛𝑚

𝑘 = 𝑑(𝑡𝑘) ≤ 

                                              ≤ 𝑑0 = 𝑥𝑛𝑚+1
𝑘 < ⋯ < 𝑥𝑛+1

𝑘 = 𝑏0. (14) 

 
In our method we require the boundary between the liquid and 

solid phase to move between the adjacent nodes, starting from the 

node 𝑥𝑛𝑚

0 , i.e. in the moment 𝑡𝑘 the boundary will be in the node 

𝑥𝑛𝑚−𝑘
𝑘 = 𝜉(𝑡𝑘). To simplify the computations divide the area Ω𝑚 

to the elements with equal weight. The length between nodes will 
be then constant in each phase and equal to: 

 

ℎ1 =
𝑑0

𝑛𝑚
,       for the liquid phase, (15) 

 

ℎ2 =
𝜚2

𝜚1

𝑑0

𝑛𝑚
,   for the solid phase, (16) 

 

ℎ3 =
𝑏0−𝑑0

𝑛3
,   for the mold. (17) 

 

Let us denote 𝑢𝑖,𝑘 = 𝑢(𝑥𝑖
𝑘 , 𝑡𝑘) and 𝑢𝑘 = [ 𝑢0,𝑘 , … , 𝑢𝑛+1,𝑘] 𝑇. 

We will now describe the procedure of determining the time 
step size. The initial time step size can be obtained from the 

Stefan condition for  𝑡 =  0: 
 

Δ𝑡 =
−𝜅ℎ1

𝜆3
𝑢𝑛𝑚+2,0−𝑢𝑛𝑚+1,0

ℎ3
−𝜆1

𝑢∗−𝑢𝑛𝑚−1,0

ℎ1

 . (18) 

 

After determining the temperature distribution in moment 𝑡𝑘 we 
may correct the time step size using the following equations (also 
resulting from the Stefan condition): 

Δ𝑡 =
−𝜅ℎ1

𝜆2

𝑢𝑛𝑚−𝑘+1,𝑘−𝑢∗

ℎ2
−𝜆1

𝑢∗−𝑢𝑛𝑚−𝑘−1,𝑘

ℎ1

  (19) 

 

for 𝑘 <  𝑛𝑚 and 
 

Δ𝑡 =
−𝜅ℎ1

𝜆2
𝑢1,𝑛𝑚−𝑢∗

ℎ2
−𝑞(𝑡𝑛𝑚)

  (20) 

 

for 𝑘 =  𝑛𝑚. Repeat the correction until the demanded accuracy is 
reached. 

The distribution of temperature in moment 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡 is 
determined using the Finite Elements Method. In this method we 
solve the matrix equation [2, 37]: 

 

𝐶𝑢′ = 𝐾𝑢 + 𝑓 , (21) 
 

where 𝐶 is the heat capacity matrix and 𝐾 is the heat conductivity 

matrix. Matrices 𝐶, 𝐾 and vector 𝑓 are obtained using the 
Galerkin method [37] taking into account the component resulting 
from the convective component in equation (1) for the solid 
phase. The movement of the boundary between the adjacent nodes 

makes these matrices to be recalculated for every 𝑘. Using the 
implicit scheme we discretize the equation (21) to obtain the 
following system of the linear equations 
 

(
1

Δ𝑡
𝐶 + 𝐾) 𝑢𝑘+1 =

1

Δ𝑡
𝐶𝑢𝑘 + 𝑓 , (22) 

 

solution of which is the sought distribution of temperature in 

moment 𝑡𝑘+1. 

 

 

4. Computational example 
 

Let us consider the theoretical example with known exact 

solution. Assume: 𝑐1 = 2, 𝑐2 = 4, 𝑐3 = 3, 𝜆1 = 5, 𝜆2 = 3, 

𝜆3 =
100

153
, 𝜚1 = 0.9, 𝜚2 = 1, 𝜚3 =

41

153
, 𝜅 = 2.3, 𝑢∗ = 0, 𝛼 = 1, 

𝜉0 = 𝑑0 = 1, 𝑏0 = 1.1, 𝑡∗ = 1  and 

 

𝑞(𝑡) = 1.8𝑒0.36(𝑡−1), 

 

𝑢∞(𝑡) = 1 − 9.2 𝑒1.23(0.1+𝑡), 

 

𝜆𝑠(𝑡) = 𝑡 (1 −
𝜚1

𝜚2
),  

 

𝑢0(𝑥) =  {
1 − 𝑒0.36(𝑥−1), for 𝑥 ≤ 𝑑0,

1 − 5.1 𝑒1.23(𝑥−1), for 𝑑0 < 𝑥 ≤ 𝑏0

.  

 

Exact solution is given by functions: 

 

𝑑(𝑡) = 1 − 0.1 𝑡, 

 

𝜉(𝑡) = 1 −  𝑡, 
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𝑢(𝑥, 𝑡) =  {

1 − 𝑒0.36(𝑥+𝑡−1), for 0 ≤ 𝑥 < 𝜉(𝑡),

1 − 𝑒
41

30
(𝑥+𝑡−1), for 𝜉(𝑡) ≤ 𝑥 ≤ 𝑑(𝑡),

1 − 5.1𝑒1.23(𝑥+𝑡−1), for 𝑑0 ≤ 𝑥 ≤ 𝑏0.

  

 

Calculations were performed for the grid dividing the area Ω𝑚 

to 50, 100, 200 and 500 linear elements and the area 𝐷3 

correspondingly to 5, 10, 20 and 50 elements. The required time 

step size precision was set  𝜀 =  0.0001 and was obtained on 

average 2 iterations.  

 

 
Table 1.  

Calculations' results for different grid densities (𝑛𝑚 - number of 

elements,  Δmax - maximal absolute error of the simulated time 

step,  Δavg - average absolute error of the simulated time step, 𝑡∗ - 

simulated time of completion of the process) 

𝑛𝑚 Run time [s] Δmax Δavg 𝑡∗ 

50 0.070 0.0394 0.0166 0.961 

100 0.436 0.0346 0.0139 0.965 

200 5.551 0.0322 0.0126 0.968 

500 191.789 0.0307 0.0118 0.969 

 

Table 1 presents the run time of algorithm, average and 

maximal time step size determination absolute error and obtained 

final time for each grid. 

The plots presented on the figures were prepared for 𝑛𝑚 =
 200. Figure 1 shows the temperature curves in the ingot area in 

points 𝑥𝑝 = 0 (dotted), 0.7 (dot-dashed) and 𝑑(𝑡) (dashed), 

Figure 2 shows the temperature curves in the mold area in points 

𝑥𝑝 = 1 (dotted), 1.05 (dot-dashed) and 1.1 (dashed). The solid 

lines represents the exact solution. Figure 3 shows the position of 
the moving interface, Figure 4 shows the length of the ingot area. 

The dashed lines represent the simulated values, the solid lines 
represent the exact solution. 

The calculations' errors are caused mainly by the 

approximation of the derivatives on the boundary between phases 

appearing in the Stefan condition. It has an influence on accuracy 

of determining the time step based on Stefan condition. From the 

attached pictures we can deduce, that using the simplest linear 

elements allows to gain very good results. In the future we plan to 

use other types of elements, that will allow more accurate 

approximation of the temperature derivatives on the boundary 

between phases. 

 

 

 

 
 

 
Fig. 1. The temperature curves in the ingot area in points 𝑥𝑝 = 0 

(dotted), 0.7 (dot-dashed) and 𝑑(𝑡) (dashed). Solid lines represent 

the exact solution 
 

 
Fig. 2. The temperature curves in the mold area in points 𝑥𝑝 = 1 

(dotted), 1.05 (dot-dashed) and 1.1 (dashed). Solid lines represent 

the exact solution 
 

 
Fig. 3. Simulated (dotted) and exact (solid) position of the moving 

interface 
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Fig. 4. Simulated (dotted) and exact (solid) length of the ingot 

area 
 

 

5. Conclusions 
 

In this paper we have presented the method of solving the 

solidification of the pure metals problem involving the material 
shrinkage and air-gap between material and mold. To determine 

the distribution of temperature we have used the finite elements 
method. The time step size was determined by the iterative 

procedure basing on the formula obtained from the Stefan 
condition. The length of the material in mold was obtained from 

the mass balance equation. 
Increasing the grid density we obtain more accurate 

simulations, but run time of the algorithm increases incomparably 
fast compared to the increase of accuracy. 

In the future we plan to use other types of elements to gain 
more accurate results. We also plan to consider the inverse issues 

for presented direct problem and to expand the model to 
multidimensional case.  
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