Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Zero-dimensional two-stage SOFC stacks dynamic model was developed to investigate the effect of operating parameters on stacks performance. The model resolves spatially thermal and thermo-electrochemical behaviour for electrochemical reactions, Catalytic Partial Oxidation and Steam Reforming processes. Design variables and thermo-electrochemical properties were obtained from in-house-fabricated SOFCs carried out by project partners. The completed SOFCs based Combined Heat and Power, CHP, system model was validated by data18 and numerical results obtained at steady-state mode showing its high-fidelity. A parametric study with respect to key operating parameters including changes in fuel utilization, lambda number and current density values was conducted. The global CHP system dynamic response, in term of the current/voltage delivered by two-stage SOFC stacks, under a fi xed fuel utilization, has been determined resulting in greater variations in the voltage of a single cell in the first stack in comparison to the corresponding values in the second stack.
Czasopismo
Rocznik
Tom
Strony
1--11
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Department of Chemical Engineering and Processes, Faculty of Technology and Chemical Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Department of Chemical Engineering and Processes, Faculty of Technology and Chemical Engineering, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Tu, B., Wen, H., Yin, Y., Zhang, F., Su, X., Cui, D. & Cheng, M. (2020). Thermodynamic analysis and experimental study of electrode reactions and open circuit voltage for methane-fuelled SOFC. Internat. J. Hydrog. Energy, 45, 58, 34069–34079. DOI: 10.1016/j.ijhydene.2020.09.088.
- 2. Lee, K., Kang, S. & Ahn, K.Y. (2017). Development of a highly efficient solid oxide fuel cell system. Appl. Energy, 205, 822–833. DOI: 10.1016/j.apenergy.2017.08.070
- 3. Nanaeda, K., Mueller, F., Brouwer, J. & Samuelsen, S. (2010). Dynamic modeling and evaluation of solid oxide fuel cell-combined heat and power system operating strategies. J. Power Sourc., 195, 3176–3185. DOI: 10.1016/j.jpowsour.2009.11.137.
- 4. Ferrari, M.L. (2015). Advanced control approach for hybrid systems based on solid oxide fuel cells. Appl. Energy, 145, 364–373. DOI: 10.1016/j.apenergy.2015.02.059.
- 5. Magistri, L., Traverso, A.F. & Shah, R.K. (2005). Heat Exchangers for Fuel Cell and Hybrid System Applications. J. Fuel Cell Sci. Technol., 3(2), 111–118. DOI: 10.1115/1.2173665.
- 6. Santis-Alvarez, A.J., Nabavi, M., Hild, N., Poulikakos, D. & Stark, W.J. (2011). A fast hybrid start-up process for thermally self-sustained catalytic n-butane reforming in micro-SOFC power plants. Energy & Environ. Sci., 4, 3041–3050. DOI: 10.1039/C1EE01330K.
- 7. Padulles, J., Ault, G.W. & McDonald, J.R. (2000). An in-tegrated SOFC plant dynamic model for power systems simulation. J. Power Sourc., 86, 495–500. DOI: S0378-7753(99)00430-9.
- 8. D’Andrea, G., Gandiglio, M., Lanzini, A. & Santarelli, M. (2017). Dynamic model with experimental validation of a biogas-fed SOFC plant. Energy Convers. Manag., 135, 21–34. DOI: 10.1016/j.enconman.2016.12.063.
- 9. Wang, Y., Wehrle, L., Banerjee, A., Shi, Y. & Deutschmann, O. (2021). Analysis of a biogasfed SOFC CHP system based on multiscale hierarchical modeling. Renewable Energy, 163, 78–87. DOI: 10.1016/j.renene.2020.08.091.
- 10. Kakac, S., Pramuanjaroenkij, A. & Zhou, X.Y. (2007). A review of numerical modeling of solid oxide fuel cells. Internat. J. Hydrog. Energy, 32, 761–786. DOI: 10.1016/j.ijhydene.2006.11.028.
- 11. Ghorbani B. & Vijayaraghavan K. (2019). A review study on software-based modeling of hydrogen-fueled solid oxide fuel cells. Internat. J. Hydrogen Energy, 44, 13700–13727. DOI: 10.1016/j.ijhydene.2019.03.217.
- 12. Grew, K.N. & Chiu W.K.S. (2012). A review of modeling and simulation techniques across the length scales for the solid oxide fuel cells. J. Power Sourc., 199, 1–13. DOI: 10.1016/j.jpowsour.2011.10.010.
- 13. Safari, A., Shahsavari, H. & Salehi, J. (2018). A mathematical model of SOFC power plant for dynamic simulation of multi-machine power systems. Energy, 149, 397–413. DOI: 10.1016/j.energy.2018.02.068.
- 14. Mehr, A.S., Mosayeb Nezhad, M., Lanzini, A., Yari, M., Mahmoudi, S.M.S. & Santarelli, M. (2018). Thermodynamic assessment of a novel SOFC based CCHP system in a waste-water treatment plant. Energy, 150, 299–309. DOI: 10.1016/j.energy.2018.02.102.
- 15. Posdziech, O. System concepts and BoP components, Staxeralsunfire GmBH, http://slideplayer.com/slide/8883912/
- 16. Bachman, J., Posdziech, O., Pianko-Oprych, P., Kaisalo, N. & Pennanen, J. (2017). Development and testing of innovative SOFC system prototype with staged stack connection for efficient stationary power and heat generation. ECS Transactions, 78, 1, 133–144. DOI: 10.11490/07801.0133ecst.
- 17. Zhang, W., Croiset, E., Douglas, P.L., Fowler, M.W. & Entchev, E. (2005). Simulation of a tubular solid oxide fuel cell stack using Aspen PlusTM unit operation models. Energy Convers, Manag., 46, (2), 181–196. DOI:10.1016/j.enconman.2004.03.002.
- 18. STAGE-SOFC: Innovative SOFC system layout for stationary power and CHP applications, EU Project, internal report. 1.04.2014.
- 19. Huangfu, Y., Gao, F., Abbas-Turki, A., Bouquain, D. & Miraoui, A. (2013). Transient dynamic and modeling parameter sensitivity analysis of 1D solid oxide fuel cell model, Energy Convers. Manag., 71, 172–185. DOI: 10.1016/j.encon-man.2013.03.029.
- 20. Yang, F., Zhu, X.J. & Cao, G.Y. (2007). Nonlinear fuzzy modeling of a MCFC stack by identifi cation method. J. Power Sourc., 166, 354–361. DOI: 10.1016/j.jpowsour.2007.01.062.
- 21. Cali, M., Santarelli, M.G.L. & Leone, P. (2006). Computer experimental analysis of the CHP performance of a 100 kWe SOFC field unit by a factorial design. J. Power Sourc., 156, 400–413. DOI: 10.1016/j.jpowsour.2005.06.033.
- 22. Todd, B. & Young, J.B. (2002). Thermodynamic and transport properties for solid oxide fuel cell modelling. J. Power Sourc., 110, 186–200. DOI: 10.1016/S0378-7753(02)00277-X.
- 23. Janardhanan, V.M. & Deutschmann, O. (2006). CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. J. Power, Sourc., 162, 1192–1202. DOI: 10.1016/j.jpowsour.2006.08.017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63f84343-33fb-41e6-95f8-72aedadb0c4b