PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of CrN/TiO2 coatings obtained in a hybrid PVD/ALD method on Al-Si-Cu alloy substrate

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper addresses an important scientific topic from the utilitarian point of view concerning the surface treatment of Al-Si-Cu aluminum alloys by PVD/ALD hybrid coating deposition. The influence of the conditions of deposition of titanium oxide in CrN/TiO2 coatings on their structure and properties, in particular corrosion resistance, were investigated. The TiO2 layer was produced by the atomic layer deposition (ALD) method with a variable number of cycles. Structural investigations were performed using scanning and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM), and Raman spectroscopy methods. Electrochemical properties were analyzed using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. The CrN/TiO2 hybrid coating with titanium oxide deposited at 500 ALD cycles showed the best corrosion properties. It was also found that the prerequisite for obtaining the best electrochemical properties was the amorphous structure of titanium oxide in the tested hybrid coatings. The high tribological properties of the tested coatings were also confirmed.
Rocznik
Strony
art. no. e144622
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Faculty of Mechanical Engineering, Konarskiego 18a St., 44-100 Gliwice, Poland
Bibliografia
  • [1] D. Caliari, G. Timelli, B. Zabala, and A. Igartua, “Microstructural and tribological investigations of diecast and hard anodized AlSiCu alloys,” Surf. Coat. Technol., vol. 352, pp. 462–473, 2018, doi: 10.1016/j.surfcoat.2018.07.084.
  • [2] P. Snopiński et al., “Evolution of microstructure, texture and corrosion properties of additively manufactured AlSi10Mg alloy subjected to Equal Channel Angular Pressing (ECAP),” Symmetry, vol. 14, no. 4, p. 674, 2022, doi: 10.3390/sym14040674.
  • [3] M. Uhríčik, P. Palček, M. Chalupová, P. Hanusová, and L. Kuchariková, “Analysis of the properties of EN AC 51200 aluminum alloy,” Arch. Metall. Mater., vol. 65, no. 4, pp. 1437–1445, 2020, doi: 10.24425/amm.2020.133711.
  • [4] A.M. Titu, A.B. Pop, M. Nabiałek, C.C. Dragomir, and A.V. Sandu, “Experimental modeling of the milling process of aluminum alloys used in the aerospace industry,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138565, 2021, doi: 10.24425/bpasts.2021.138565.
  • [5] K. Labisz, “Laser surface treatment of cast Al–Si–Cu alloys,” J. Achiev. Mater. Manuf. Eng., vol. 61, no. 2, pp. 63–86, 2013.
  • [6] M. Staszuk et al., “Investigations of TiO2, Ti/TiO2 and Ti/TiO2/Ti/TiO2, coatings produced by ALD and PVD methods on Mg-(Li)-Al-RE alloy substrates,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137549, 2021, doi: 10.24425/bpasts.2021.137549.
  • [7] A. Mazurkiewicz, J. Smolik, J. Mizera, J. Kacprzyńska-Gołacka, M. Rydzewski, and M. Szota, “Composite layers “MgAl intermetalic Layer/PVD coating” obtained on the AZ91D magnesium alloy by different hybrid surface treatment methods,” Arch. Metall. Mater., vol 60, no. 2, pp. 1031–1035, 2015, doi: 10.1515/amm-2015-0255.
  • [8] K. Labisz, T. Tański, D. Janicki, W. Borek, K. Lukaszkowicz, and L.A. Dobrzański, “Effect of laser feeding on heat treated aluminium alloy surface properties,” Arch. Metall. Mater., vol. 61, no 2, pp. 741–746, 2016, doi: 10.1515/amm-2016-0126.
  • [9] R. Bayón et al., “Corrosion-wear behavior of PVD Cr/CrN multilayer coatings for gear applications,” Tribol. Int., vol. 42, pp. 591–599, 2009, doi: 10.1016/j.triboint.2008.06.015.
  • [10] J.M. Lackner, W. Waldhauser, L. Major, J. Morgiel, M. Kot, and B. Major, “Nanocrystalline Cr/CrN and Ti/TiN multilayer coatings produced by pulsed laser deposition at room temperature,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 54, no. 2, pp. 175–180, 2006.
  • [11] E.Y. Choi, M.Ch. Kang, D.H. Kwon, D.W. Shin, and K.H. Kim, “Comparative studies on microstructure and mechanical properties of CrN, Cr-C-N and Cr-Mo-N coatings,” J. Mater. Process. Technol., vol. 187, pp. 566–570, 2007, doi: 10.1016/j.jmatprotec.2006.11.090.
  • [12] M. Ürgen and A.F. Cakir, “The effect of heating on corrosion behavior of TiN- and CrN-coated steels,” Surf. Coat. Technol., vol. 96, no. 2–3, pp. 236–244, 1997, doi: 10.1016/S0257-8972(97)00123-0.
  • [13] C.X. Shan, X. Hou, K.-L. Choy, and P. Choquet, “Improvement in corrosion resistance of CrN coated stainless steel by conformal TiO2 deposition,” Surf. Coat. Technol., vol. 202, pp. 2147–2151, 2008, doi: 10.1016/j.surfcoat.2007.08.078.
  • [14] J. Leppäniemi, P. Sippola, M. Broas, J. Aromaa, H. Lipsanen, and J. Koskinen, “Corrosion protection of steel with multilayer coatings: Improving the sealing properties of physical vapor deposition CrN coatings with Al2O3/TiO2 atomic layer deposition nanolaminates,” Thin Solid Films, vol. 627, pp. 59–68, 2017, doi: 10.1016/j.tsf.2017.02.050.
  • [15] Z. Wan et al., “Enhanced Corrosion Resistance of PVD-CrN Coatings by ALD Sealing Layers,” Nanoscale Res. Lett., vol. 12, p. 248, 2017, doi: 10.1186/s11671-017-2020-1.
  • [16] M. Staszuk et al., “Investigations of TiO2/NanoTiO2 Bimodal Coatings Obtained by a Hybrid PVD/ALD Method on Al–Si–Cu Alloy Substrate,” Coatings, vol. 12, p. 338, 2022, doi: 10.3390/coatings12030338.
  • [17] J.A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A, vol. 4, p. 3059, 1986, doi: 10.1116/1.573628.
  • [18] P. Feng, Z. Dongdong, L. Xuanyong, and Z. Yu, “Recent progress in superhydrophobic coating on Mg alloys: A general review,” J. Magnes. Alloy., vol. 9, no. 5, pp. 1471–1486, 2021, doi: 10.1016/j.jma.2020.08.024.
  • [19] X. Yin and X. Wang, “Kinetics-driven crystal facets evolution at the tip of nanowires: A new implementation of the Ostwald–Lussac law,” Nano Lett., vol. 16, no. 11, pp. 7078–7084, 2016, doi: 10.1021/acs.nanolett.6b03317.
  • [20] J. Shi, Z. Li, A. Kvit, S. Krylyuk, A.V. Davydov, and X. Wang, “Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition,” Nano Lett., vol. 13, pp. 5727–5734, 2013, doi: 10.1021/nl403566u.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63f19686-bd32-4bbe-a479-4b132bf7c0b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.