PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic Stability of the Periodic and Aperiodic Structures of the Bernoulli-Euler Beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study analyzed the influence of periodic and aperiodic stiffness distribution for the four-element Bernoulli-Euler beam on the first two eigenfrequencies and the dynamic stability of the system. The influence of increasing the ratio of cross-sections of the analyzed elements was also analyzed. Significant differences were found in eigenfrequencies and dynamic stability. Using the variational Hamilton principle, the equation of motion was derived, on the basis of which the values of the eigenfrequencies were determined, and the transformation into the form of the Mathieu equation made it possible to determine the dynamic stability for the analyzed structures.
Twórcy
  • Czestochowa University of Technology, Department of Mechanics and Machine Design Fundamentals, Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
autor
  • VSB - Technical University of Ostrava, Faculty of Mechanical Engineering Department of Machining, Assembly and Engineering Metrology, 70833 Ostrava, Czech Republic
  • Czestochowa University of Technology, Department of Mechanics and Machine Design Fundamentals, Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
  • Czestochowa University of Technology, Department of Mechanics and Machine Design Fundamentals, Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
Bibliografia
  • [1] Y.K. Lin, G.Q. Cai, Probabilistic structural dynamics, McGraw-Hill, New York (1995).
  • [2] L.D. Landau, E.M. Lifshitz, Mechanics, Elsevier, Oxford (2007).
  • [3] J.J.H. Brouwers, Physica D 240 (12), 990-1000 (2011). DOI: https://doi.org/10.1016/j.physd.2011.02.009
  • [4] A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley, New York (1979).
  • [5] D. Yurchenko, A. Naess, P. Alevras, Probabilist. Eng. Mech. 31, 12-18 (2013). DOI: https://doi.org/10.1016/j.probengmech.2012.10.004
  • [6] Z.H. Feng, X.J. Lan, X.D. Zhu, Int. J. Nonlin. Mech. 42 (10), 1170-1185 (2007). DOI: https://doi.org/10.1016/j.ijnonlinmec.2007.09.002
  • [7] G. Song, V. Sethi, H.-N. Li, Eng. Struct. 28 (11), 1513-1524 (2006). DOI: https://doi.org/10.1016/j.engstruct.2006.02.002
  • [8] C.-Y. Lin, L.-W. Chen, J. Sound. Vib. 267 (2), 209-225 (2003). DOI: https://doi.org/10.1016/s0022-460X(02)01427-X
  • [9] W. Sochacki, Thin Wall. Struct. 45 (10-11), 927-930 (2007). DOI: https://doi.org/10.1016/j.tws.2007.08.023
  • [10] Y. Li, S. Fan, Z. Guo, J. Li, L. Cao, H. Zhuang, Commun. Nonlinear. Sci. 18 (2), 401-410 (2013). DOI: https://doi.org/10.1016/j.cnsns.2012.06.025
  • [11] Y. Zhou, Y. Zhang, G. Yao, Compos. Struct. 267, 113858 (2021). DOI: https://doi.org/10.1016/j.compstruct.2021.113858
  • [12] W. Sochacki, J. Sound. Vib. 314 (1-2), 180-193 (2008). DOI: https://doi.org/10.1016/j.jsv.2007.12.037
  • [13] Y.-S. Shih, Z.-F. Yeh, Int. J. Solids. Struct. 42 (7), 2145-2159 (2005). DOI: https://doi.org/10.1016/j.ijsolstr.2004.09.007
  • [14] G.N. Jazar, Int. J. Nonlin. Mech. 39 (8), 1319-1331 (2004). DOI: https://doi.org/10.1016/j.ijnonlinmec.2003.08.009
  • [15] A.A. Prikhodko, A.V. Nesterov, S.V. Nesterov, Procedia Engineer. 150, 341-346 (2016). DOI: https://doi.org/10.1016/j.proeng.2016.06.715
  • [16] M.J. Smyczynski, E. Magnucka-Blandzi, Thin-Wall. Struct. 113, 144-150 (2017). DOI: https://doi.org/10.1016/j.tws.2016.11.024
  • [17] Y. Fu, J. Wang, Y. Mao, Appl. Math. Model. 36 (9), 4324-4340 (2012). DOI: https://doi.org/10.1016/j.apm.2011.11.059
  • [18] Y. Huang, J. Fu, A. Liu, Compos. Part B-Eng. 164, 226-234 (2019). DOI: https://doi.org/10.1016/j.compositesb.2018.11.088
  • [19] P. Sourani, M. Hashemian, M. Pirmoradian, D. Toghraie, Mech. Mater. 145, 103403 (2020). DOI: https://doi.org/10.1016/j.mechmat.2020.103403
  • [20] A. Talimian, P. Béda, Eur. J. Mech. A-Solid. 72, 245-251 (2018). DOI: https://doi.org/10.1016/j.euromechsol.2018.05.013
  • [21] H.-C. Li, L.-L. Ke, Thin-Wall. Struct. 161, 107432 (2021). DOI: https://doi.org/10.1016/j.tws.2020.107432
  • [22] M.A.R. Loja, J.I. Barbosa, C.M. Mota Soares, Compos. Struct. 182, 402-411 (2017). DOI: https://doi.org/10.1016/j.compstruct.2017.09.046
  • [23] S. Garus, W. Sochacki, J. Appl. Math. Comput. Mech. 17 (4), 19-24 (2018). DOI: https://doi.org/10.17512/jamcm.2018.4.03
  • [24] C.S. Ryu, G.Y. Oh, M.H. Lee, Phys. Rev. B 48 (1), 132-141 (1993). DOI: https://doi.org/10.1103/PhysRevB.48.132
  • [25] J.X. Zhong, J.R. Yan, J.Q. You, J. Phys.-Condens. Mat. 3 (33), 6293-6298 (1991). DOI: https://doi.org/10.1088/0953-8984/3/33/008
  • [26] M. Kolář, M.K. Ali, F. Nori, Phys. Rev. B 43 (1), 1034-1047 (1991). DOI: https://doi.org/10.1103/PhysRevB.43.1034
  • [27] H. Ni, J. Wang, A. Wu, Optik 242, 167163 (2021). DOI: https://doi.org/10.1016/j.ijleo.2021.167163
  • [28] Y. Trabelsi, N. Ben Ali, F. Segovia-Chaves, H.V. Posada, Results Phys. 19, 103600 (2020). DOI: https://doi.org/10.1016/j.rinp.2020.103600
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63efdb03-3015-439c-b1e0-6713cacb3757
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.