PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational intelligence for predicting biological effects of drug absorption in lungs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, the lungs have been extensively examined as a route for delivering drugs (active pharmaceutical ingredients, APIs) into the bloodstream; this is mainly due to the possibility of the noninvasive administration of macromolecules such as proteins and peptides. The absorption mechanisms of chemical compounds in the lungs are still not fully understood, which makes pulmonary formulation composition development challenging. This manuscript presents the development of an empirical model capable of predicting the excipients’ influence on the absorption of drugs in the lungs. Due to the complexity of the problem and the not-fully-understood mechanisms of absorption, computational intelligence tools were applied. As a result, a mathematical formula was established and analyzed. The normalized root-mean-squared error (NRMSE) and R2 of the model were 4.57%, and 0.83, respectively. The presented approach is beneficial both practically by developing an in silico predictive model and theoretically by gaining knowledge of the influence of APIs and excipient structure on absorption in the lungs.
Wydawca
Czasopismo
Rocznik
Strony
99--121
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Jagiellonian University Medical College, Department of Pharmaceutical Technology and Biopharmaceutics, ul. Medyczna 9, 30-688 Krakow, Poland
autor
  • Jagiellonian University Medical College, Department of Pharmaceutical Technology and Biopharmaceutics, ul. Medyczna 9, 30-688 Krakow, Poland
  • Jagiellonian University Medical College, Department of Pharmaceutical Technology and Biopharmaceutics, ul. Medyczna 9, 30-688 Krakow, Poland
Bibliografia
  • [1] Agu R.U., Ugwoke M.I., Armand M., Kinget R., Verbeke N.: The lung as a route for systemic delivery of therapeutic proteins and peptides, Respiratory research, vol. 2(4), pp. 198–209, 2001. http://dx.doi.org/10.1186/rr58.
  • [2] Al-Tabakha M.M.: Future prospect of insulin inhalation for diabetic patients: The case of Afrezza versus Exubera, Journal of Controlled Release, vol. 215, pp. 25–38, 2015. http://dx.doi.org/10.1016/j.jconrel.2015.07.025.
  • [3] Bäckman P., Arora S., Couet W., Forbes B., de Kruijf W., Paudel A.: Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs, European Journal of Pharmaceutical Sciences, vol. 113, pp. 41–52, 2018. http://dx.doi.org/10.1016/j.ejps.2017.10.030.
  • [4] Banaei A., Pourbasheer E., Haggi F.: QSAR studies and application of genetic algorithm – multiple linear regressions in prediction of novel p2x7 receptor antagonists’ activity, Iranian Chemical Communication, vol. 4(3), pp. 318–336, 2016. http://icc.journals.pnu.ac.ir/article_2218.html.
  • [5] Bienert S., Waterhouse A., de Beer T., Tauriello G., Studer G., Bordoli L., Schwede T.: The SWISS-MODEL Repository – new features and functionality, Nucleic Acids Research, vol. 45(D1), pp. D313–D319, 2017. http://dx.doi.org /10.1093/nar/gkw1132.
  • [6] Bluemke D.A.: Radiology in 2018:Are You Working with AI or Being Replaced by AI? Radiology, vol. 287(2), pp. 365–366, 2018. http://dx.doi.org/10.1148 /radiol.2018184007.
  • [7] Cannon A.J.: monmlp: Monotone multi-layer perceptron neural network., 2012. http://cran.r-project.org/web/packages/monmlp/index.html.
  • [8] Core R.D.: R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, vol. 1, 2008. https://www.r-project.org.
  • [9] Dong Z., Hamid K.A., Gao Y., Lin Y., Katsumi H., Sakane T., Yamamoto A.: Polyamidoamine dendrimers can improve the pulmonary absorption of insulin and calcitonin in rats, Journal of Pharmaceutical Sciences, vol. 100(5), pp. 1866–1878, 2011. http://dx.doi.org/10.1002/jps.22428.
  • [10] Edwards C.D., Luscombe C., Eddershaw P., Hessel E.M.: Development of a Novel Quantitative Structure-Activity Relationship Model to Accurately Predict Pulmonary Absorption and Replace Routine Use of the Isolated Perfused Respiring Rat Lung Model, Pharmaceutical Research, 33(11), pp. 2604–2616, 2016. http://dx.doi.org/10.1007/s11095-016-1983-4.
  • [11] Eriksson J., Sjögren E., Thörn H., Rubin K., Bäckman P., Lennernäs H.: Pulmonary absorption – estimation of effective pulmonary permeability and tissue retention of ten drugs using an ex vivo rat model and computational analysis, European Journal of Pharmaceutics and Biopharmaceutics, vol. 124, pp. 1–12, 2018. http://dx.doi.org/10.1016/j.ejpb.2017.11.013.
  • [12] European Medicines Agency: Scientific discussion in marketing authorisation document for the product EXUBERA, insulin inhalation powder, 2006. https: //www.ema.europa.eu/en/documents/scientific-discussion/exubera-epa r-scientific-discussion_en.pdf.
  • [13] Flasch O., Mersmann O., Bartz-Beielstein T., Stork J., Zaefferer M.: R genetic programming framework. R package version 0.4-1, 2015. https://rdrr.io/cr an/rgp/.
  • [14] Gandomi A.H., Roke D.A.: Assessment of artificial neural network and genetic programming as predictive tools, Advances in Engineering Software, vol. 88, pp. 63–72, 2015. http://dx.doi.org/10.1016/j.advengsoft.2015.05.007.
  • [15] Geerts T., Vander Heyden Y.: In silico predictions of ADME-Tox properties: drug absorption, Combinatorial Chemistry & High Throughput Screening, vol. 14(5), pp. 339–361, 2011. http://dx.doi.org/10.2174/138620711795508359.
  • [16] He L., Gao Y., Lin Y., Katsumi H., Fujita T., Yamamoto A.: Improvement of pulmonary absorption of insulin and other water-soluble compounds by polyamines in rats, Journal of Controlled Release, vol. 122(1), pp. 94–101, 2007. http://dx.doi.org/10.1016/j.jconrel.2007.06.017.
  • [17] Hussain A., Arnold J.J., Khan M.A., Ahsan F.: Absorption enhancers in pulmonary protein delivery, Journal of Controlled Release, vol. 94(1), pp. 15–24, 2004 http://dx.doi.org/10.1016/j.jconrel.2003.10.001.
  • [18] Hussain A., Yang T., Zaghloul A.A., Ahsan F.: Pulmonary Absorption of Insulin Mediated by Tetradecyl-B-Maltoside and Dimethyl-B-Cyclodextrin, Pharmaceutical Research, vol. 20(10), pp. 1551–1557, 2003. http://dx.doi.org/10.1023 /A:1026118813943.
  • [19] Ibrahim M., Garcia-Contreras L.: Mechanisms of absorption and elimination of drugs administered by inhalation, Therapeutic Delivery, vol. 4(8), pp. 1027–1045, 2013. http://dx.doi.org/10.4155/tde.13.67.
  • [20] Kerlin R.L., Li X.: Pathology in Non-Clinical Drug Safety Assessment. In: Haschek W.M., Rousseaux C.G., Matthew A. Wallig M.A. (eds.), Haschek and Rousseaux’s Handbook of Toxicologic Pathology, Chapter 24, pp. 725–750. Academic Press, third ed., 2013. http://dx.doi.org/10.1016/B978-0-12-41575 9-0.00024-8.
  • [21] Kim S., Thiessen P.A., Bolton E.E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., Shoemaker B.A., Wang J., Yu B., Zhang J., Bryant S.: PubChem Substance and Compound databases: CID 70095, Nucleic Acids Research, vol. 44, pp. 1202–1213, 2016. https://pubchem.ncbi.nlm.nih.gov/.
  • [22] Kobayashi S., Kondo S., Juni K.: Pulmonary delivery of salmon calcitonin dry powders containing absorption enhancers in rats, Pharmaceutical Research, vol. 13(1), pp. 80–83, 1996. http://dx.doi.org/10.1023/A:1016081301369.
  • [23] Kraljevich T.: h2o: R interface for H20, 2018. https://cran.r-project.org/p ackage=h2o.
  • [24] Kuhn M., Weston S.: Cubist: Rule- And Instance-Based Regression Modeling, 2016. https://cran.r-project.org/package=Cubist.
  • [25] Kumar T.M., Misra A.: Pulmonary absorption enhancement of salmon calcitonin, Journal of Drug Targeting, vol. 12(3), pp. 135–144, 2004. http://dx.doi.org/1 0.1080/1061186042000223644.
  • [26] Li Y., Mitra A.K.: Effects of phospholipid chain length, concentration, charge, and vesicle size on pulmonary insulin absorption, Pharmaceutical Research, vol. 13(1), pp. 76–79, 1996. http://dx.doi.org/10.1023/A:1016029317299.
  • [27] Liaw A., Wiener M.: Classification and Regression by RandomForest, R News, vol. 2(December), pp. 18–22, 2002. https://www.r-project.org/doc/Rnews/ Rnews_2002-3.pdf.
  • [28] Machida M., Hayashi M., Awazu S.: The effects of absorption enhancers on the pulmonary absorption of recombinant human granulocyte colony-stimulating factor (rhG-CSF) in rats, Biological & Pharmaceutical Bulletin, vol. 23(1), pp. 84–86, 2000. http://dx.doi.org/10.1248/bpb.23.84.
  • [29] Mitra R., Pezron I., Li Y., Mitra A.K.: Enhanced pulmonary delivery of insulin by lung lavage fluid and phospholipids, International Journal of Pharmaceutics, vol. 217(1–2), pp. 25–31, 2001. http://www.ncbi.nlm.nih.gov/pubmed/112925 39.
  • [30] Morales J.O., Fathe K.R., Brunaugh A., Ferrati S., Li S., Montenegro-Nicolini M., Mousavikhamene Z., McConville J.T., Prausnitz M.R., Smyth H.D.C.: Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes, The AAPS Journal, vol. 19(3), pp. 652–668, 2017. http://dx.doi.org/10.1208/s12248-017-0054-z.
  • [31] Morita T., Yamamoto A., Hashida M., Sezaki H.: Effects of Various Absorption Promoters on Pulmonary Absorption of Drugs with Different Molecular Weights, Biological & Pharmaceutical Bulletin, vol. 16(3), pp. 259–262, 1993. http://dx .doi.org/10.1248/bpb.16.259.
  • [32] Moriwaki H., Tian Y.S., Kawashita N., Takagi T.: Mordred: A molecular descriptor calculator, Journal of Cheminformatics, vol. 10(1), 2018. http://dx.d oi.org/10.1186/s13321-018-0258-y.
  • [33] Nahar K., Gupta N., Gauvin R., Absar S., Patel B., Gupta V., Khademhosseini A., Ahsan F.: In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals, European Journal of Pharmaceutical Sciences, vol. 49(5), pp. 805–818, 2013. http://dx.doi.org/1 0.1016/j.ejps.2013.06.004.
  • [34] Nakate T., Yoshida H., Ohike A., Tokunaga Y., Ibuki R., Kawashima Y.: Improvement of pulmonary absorption of cyclopeptide FK224 in rats by coformulating with B-cyclodextrin, European Journal of Pharmaceutics and Biopharmaceutics, vol. 55(2), pp. 147–154, 2003. http://dx.doi.org/10.1016/S09 39-6411(02)00158-3.
  • [35] Okumura K., Iwakawa S., Yoshida T., Seki T., Komada F.: Intratracheal delivery of insulin Absorption from solution and aerosol by rat lung, International Journal of Pharmaceutics, vol. 88(1-3), pp. 63–73, 1992. http://dx.doi.org/10.1016 /0378-5173(92)90304-K.
  • [36] Onoue S., Yamamoto K., Kawabata Y., Hirose M., Mizumoto T., Yamada S.: Novel dry powder inhaler formulation of glucagon with addition of citric acid for enhanced pulmonary delivery, International Journal of Pharmaceutics, vol. 382(1–2), pp. 144–150, 2009. http://dx.doi.org/10.1016/j.ijpharm.200 9.08.024.
  • [37] Pacławski A., Szl¸ek J., Mendyk A.: Absorption Enhancement Predictor, 2018.
  • https://sourceforge.net/projects/absorbtionenhancmentpredictor/.
  • [38] Pfützner A., Forst T.: Pulmonary insulin delivery by means of the TechnosphereTM drug carrier mechanism, Expert Opinion on Drug Delivery, vol. 2(6), pp. 1097–1106, 2005. http://dx.doi.org/10.1517/17425247.2. 6.1097.
  • [39] Price D.F., Luscombe C.N., Eddershaw P.J., Edwards C.D., Gumbleton M.: The Differential Absorption of a Series of P-Glycoprotein Substrates in Isolated Perfused Lungs from Mdr1a/1b Genetic Knockout Mice can be Attributed to Distinct Physico-Chemical Properties: an Insight into Predicting Transporter- Mediated, Pulmonary Specific Disposition, Pharmaceutical Research, vol. 34(12), pp. 2498–2516, 2017. http://dx.doi.org/10.1007/s11095-017-2220-5.
  • [40] Quinlan J.R.: Learning with continuous classes, Machine Learning, vol. 92, pp. 343–348, 1992. http://dx.doi.org/10.1.1.34.885.
  • [41] Sanders M.: Inhalation therapy: an historical review, Primary Care Respiratory Journal: Journal of the General Practice Airways Group, vol. 16(2), pp. 71–81, 2007. http://dx.doi.org/10.3132/pcrj.2007.00017.
  • [42] Singh P., Kumar R., Sharma B.K., Prabhakar Y.S.: Topological descriptors in modeling malonyl coenzyme A decarboxylase inhibitory activity: N-Alkyl-N - -(1,1,1,3,3,3-hexafluoro-2-hydroxypropylphenyl) amide derivatives, Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 24(1), pp. 77–85, 2009. http: //dx.doi.org/10.1080/14756360801915336.
  • [43] Steiner S., Pfützner A., Wilson B.R., Harzer O., Heinemann L., Rave K.: Technosphere/ Insulin – proof of concept study with a new insulin formulation for pulmonary delivery, Exp Clin Endocrinol Diabetes, vol. 110(1), pp. 17–21, 2002. http://dx.doi.org/10.1055/s-2002-19989.
  • [44] Suarez S., Garcia-Contreras L., Sarubbi D., Flanders E., O’Toole D., Smart J., Hickey A.J.: Facilitation of pulmonary insulin absorption by H-MAP: Pharmacokinetics and pharmacodynamics in rats, Pharmaceutical Research, vol. 18(12), pp. 1677–1684, 2001. http://dx.doi.org/10.1023/A:1013362227548.
  • [45] Szlęk J., Pacławski A., Lau R., Jachowicz R., Kazemi P., Mendyk A.: Empirical search for factors affecting mean particle size of PLGA microspheres containing macromolecular drugs, Computer Methods and Programs in Biomedicine, vol. 134, pp. 137–147, 2016. http://dx.doi.org/10.1016/j.cmpb.2016.0 7.006.
  • [46] Szlęk J., Pacławski A., Llau R., Jachowicz R., Mendyk A.: Heuristic modeling of macromolecule release from PLGA microspheres, International Journal of Nanomedicine, vol. 8, pp. 4601–4611, 2013. http://dx.doi.org/10.2147/I JN.S53364.
  • [47] Tai L., Li S., Liu M.: Autonomous exploration of mobile robots through deep neural networks, International Journal of Advanced Robotic Systems, vol. 14(4), pp. 1–9, 2017. http://dx.doi.org/10.1177/1729881417703571. [48] Takano M., Kawami M., Aoki A., Yumoto R.: Receptor-mediated endocytosis of macromolecules and strategy to enhance their transport in alveolar epithelial cells, Expert Opinion on Drug Delivery, vol. 12(5), pp. 813–825, 2015. http: //dx.doi.org/10.1517/17425247.2015.992778.
  • [49] Tronde A., Nordén B., Jeppsson A.B., Brunmark P., Nilsson E., Lennernäs H., Bengtsson U.H.: Drug absorption from the isolated perfused rat lung – Correlations with drug physicochemical properties and epithelial permeability, Journal of Drug Targeting, vol. 11(1), pp. 61–74, 2003. http://dx.doi.org/10.1080/1 061186031000086117.
  • [50] Wang Z.Y., Zhang Q.: Transport of proteins and peptides across human cultured alveolar A549 cell monolayers, International Journal of Pharmaceutics, vol. 269(52), pp. 451–456, 2004. http://dx.doi.org/10.1016/j.ijpharm.200 3.09.033.
  • [51] Wiśniowska B., Mendyk A., Szlek J., Kołaczkowski M., Polak S.: Enhanced QSAR models for drug-triggered inhibition of the main cardiac ion currents, Journal of Applied Toxicology, vol. 35(9), pp. 1030–1039, 2015. http://dx.doi .org/10.1002/jat.3095.
  • [52] Yamamoto A., Fujita T., Muranishi S.: Pulmonary absorption enhancement of peptides by absorption enhancers and protease inhibitors, Journal of Controlled Release, vol. 41(1–2), pp. 57–67, 1996. http://dx.doi.org/10.1016/0168-36 59(96)01480-0.
  • [53] Yamamoto A., Okumura S., Fukuda Y., Fukui M., Takahashi K., Muranishi S.: Improvement of the Pulmonary Absorption of (Asu1,7)-Eel Calcitonin by Various Absorption Enhancers and Their Pulmonary Toxicity in Rats, Journal of Pharmaceutical Sciences, vol. 86(10), pp. 1144–1147, 1997. http://dx.doi.o rg/10.1021/js9603764
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63ed96cf-cdb4-4d57-afa7-4e0b6b717148
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.