PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization and Bioavailability of Metallic Trace Elements in Different Organic Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is important to address metabolic and heavy metal issues in organic waste through sustainable development, circular economy principles and effective solid waste management, particularly focusing on composting as a crucial approach recognized in Morocco’s Green Generation Plan to reduce waste sent to landfills and mitigate greenhouse effects and gas emissions to fight against environmental pollution. This study aims to elevate the significance of organic waste in agriculture by employing composting technics, thereby mitigating its heavy metal content and safeguarding soil and farmland against various forms of contamination. This approach aligns seamlessly with the principles of sustainable development and the circular economy, advocating for responsible waste management and the augmentation of natural resource value. The findings of the study indicated a decrease in heavy metal levels across all composts, with a minimum values at the end of the composting in Gr compost recorded in all heavy metals analyzed (Pb – 0.1125 mg·kg-1, Cd – 0.08 mg·kg-1, Cr – 2.22 mg·kg-1, Zn – 10.88 mg·kg-1, Mn – 28.85 mg·kg-1, Cu –8.30 mg·kg-1, Fe – 545.18 mg·kg-1 and Ni – 1 mg·kg-1). The findings from the assessment of heavy metal levels in the examined compost samples demonstrate their adherence to regulatory standards. Consequently, these composts can be confidently employed as organic soil enhancers, contributing to the enrichment of agricultural soils and fostering plant growth, all while avoiding the potential hazard of undue metal contamination. This study comes to confirm and consolidate previous works findings regarding the valorization of organic solid waste through composting and to minimize their major environmental risks by reducing trace metal elements through this biological process.
Twórcy
  • Civil Engineering and Environmental Laboratory, Water and Environmental Materials Team, Higher School of Technology in Salé, Mohammed V University in Rabat, 11060 Salé, Morocco
  • Civil Engineering and Environmental Laboratory, Water and Environmental Materials Team, Higher School of Technology in Salé, Mohammed V University in Rabat, 11060 Salé, Morocco
  • Civil Engineering and Environmental Laboratory, Water and Environmental Materials Team, Higher School of Technology in Salé, Mohammed V University in Rabat, 11060 Salé, Morocco
  • Civil Engineering and Environmental Laboratory, Water and Environmental Materials Team, Higher School of Technology in Salé, Mohammed V University in Rabat, 11060 Salé, Morocco
  • Civil Engineering and Environmental Laboratory, Water and Environmental Materials Team, Higher School of Technology in Salé, Mohammed V University in Rabat, 11060 Salé, Morocco
  • Civil Engineering and Environmental Laboratory, Water and Environmental Materials Team, Higher School of Technology in Salé, Mohammed V University in Rabat, 11060 Salé, Morocco
  • Regional Center for Agricultural Research in Rabat, Research Unit on Environment and Natural Resource Conservation, 10112 Rabat, Morocco
Bibliografia
  • 1. Abdellah, Y.A.Y., Shi, Z.J., Luo, Y.S., Hou, W.T., Yang, X., Wang, R.L. 2022. Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: A meta-analysis. Environmental Pollution, 307, 119549. https://doi.org/10.1016/j.envpol.2022.119549
  • 2. Alburquerque, J.A., Gonzálvez, J., Garcıa, D., Cegarra, J. 2004. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresource technology, 91(2), 195–200. https://doi.org/10.1016/S0960-8524(03)00177-9
  • 3. Alsac, N. 2007. Dosage des métaux lourds (As, Cd, Cr, Cu, Ni, Pb, Zn et Hg) dans les sols par ICP-MS. InAnnales de Toxicologie Analytique.EDP Sciences, 19(1), 37–41. https://doi.org/10.1051/ata:2007006
  • 4. Alvar-Beltrán, J., Heureux, A., Soldan, R., Manzanas, R., Khan, B., Dalla Marta, A. 2021. Assessing the impact of climate change on wheat and sugarcane with the AquaCrop model along the Indus River Basin, Pakistan. Agricultural Water Management, 253, 106909. https://doi.org/10.1016/j.agwat.2021.106909
  • 5. Ameziane, H., Nounah, A., Khamar, M., Cherkaoui, E., Kabbour, M.R. 2018. Agrochemical characterization of olive pomace obtained by different systems of extraction. Der Pharma Chemica, 10(12), 33–40.
  • 6. Amir, S, Hafidi, M, Merlina, G, Revel, J.C. 2005. Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere, 59(6), 801–810. https://doi.org/10.1016/j.chemosphere.20 04.11.016
  • 7. Cai Q.Y., Mo C.H., Wu Q.T., Zeng Q.Y., Katsoyiannis, A. 2007. Concentration and speciation of heavy metals in six different sewage sludgecomposts. J. Hazard. Mater., 147, 1063–1072. https://doi.org/10.1016/j.jhazmat.2007.01.142
  • 8. Canarutto, S., Petruzzelli, G., Lubrano, L., Guidi, G.V. 1991. How composting affects heavy metal content. BioCycle; (United States), 32(6).
  • 9. De Souza, C.D.C.B., do Amaral Sobrinho, N.M.B., Lima, E.S.A., de Oliveira Lima, J., do Carmo, M.G.F., García, A.C. 2019. Relation between changes in organic matter structure of poultry litter and heavy metals solubility during composting. Journal of environmental management, 247, 291–298. https://doi.org/10.1016/j.jenvman.2019.06.072
  • 10. Doughmi, A., Benradi, F., Cherkaoui, E., Khamar, M., Nounah, A., Zouahri, A. 2022. Fertilizing power evaluation of different mixtures of organic household waste and olive pomace.Agronomy Research, 20(S1), 913–937. https://doi.org/10.15159/AR.22.049
  • 11. Echab, A., Nejmeddine, A., Hafidi, M., Kaemmerer, M., Guiresse, A.M., Revel, J.C. 1998. Evolution de la fractale échangeable des éléments métalliques traces (Pb, Cu, Zn et Cd) lors du compostage des boues de lagunage. Agrochimica, 42(6), 313–320.
  • 12. El Kafz, G., Cherkaoui, E., Benradi, F., Khamar, M., Nounah, A., Soukayna, A. 2023. Study of the phytotoxicity of olive mill wastewater on germination and vegetative growth–case of tomato (Solanum lycopersicum L.). Ecological Engineering & Environmental Technology, 24. https://doi.org/10.12912/27197050/165817
  • 13. Gnimassoun, E.G.K., Ettien, J.B.D., Masse, D. 2020. Caractérisation des propriétés physico-chimiques et chimiques d’un compost issu d’un mélange de rafles de palmier et de fientes de volaille au Sud-Ouest de la Côte d’Ivoire. International Journal of Biological and Chemical Sciences, 14(1), 289–305. https://doi.org/10.4314/ijbcs.v14i1.24
  • 14. Guangbin, Z., Kaifu, S., Xi, M., Qiong, H., Jing, M., Hua, G., Hua, X. 2021. Nitrous oxide emissions, ammonia volatilization, and grain-heavy metal levels during the wheat season: Effect of partial organic substitution for chemical fertilizer. Agriculture, Ecosystems & Environment, 311, 107340. https://doi.org/10.1016/j.agee.2021.107340
  • 15. Hao, J., Wei, Z., Wei, D., Mohamed, T. A., Yu, H., Xie, X., Zhao, Y. 2019. Roles of adding biochar and montmorillonite alone on reducing the bioavailability of heavy metals during chicken manure composting. Bioresource Technology, 294, 122199. https://doi.org/10.1016/j.biortech.2019.122199
  • 16. He, M., Tian, G., Liang, X. 2009. Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge. J. Hazard. Mater., 163, 671–677. https://doi.org/10.1016/j.jhazmat.2008.07.013
  • 17. Houot, S., Cambier, P., Deschamps, M., Benoit, P., Bodineau, G., Nicolardot, B., Lebeau, T. 2009. Compostage et valorisation par l’agriculture des déchets urbains. Innovations Agronomiques, 5, 69–81.
  • 18. ISO 15587-1. 2002. Water quality — Digestion for the determination of selected elements in water — Part 1: Regal water digestion.
  • 19. Kassaoui, H., Lebkiri, M., Lebkiri, A., Rifi, E.H., Badoc, A., Douir, A. 2009. Bioaccumulation of heavy metals in tomato and lettuce fertilized with sludge from a wastewater treatment plant. Bull. Soc. Pharm. Bordeaux, 148, 77–92.
  • 20. Leita, L., De Nobili, M. 1991. Water‐soluble fractions of heavy metals during composting of municipal solid waste. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 20(1), pp. 73–78. https://doi.org/10.2134/jeq1991.00472425002000010012x
  • 21. Lewińska, K., Karczewska, A. 2019. A release of toxic elements from military shooting range soils as affected by pH and treatment with compost. Geoderma, 346, 1–10. https://doi.org/10.1016/j.geoderma.2019.03.031
  • 22. Lin, H., Sun, W., Yu, Y., Ding, Y., Yang, Y., Zhang, Z., Ma, J. 2021. Simultaneous reductions in antibiotics and heavy metal pollution during manure composting. Science of The Total Environment, 788, 147830. https://doi.org/10.1016/j.scitotenv.2021.147830
  • 23. Lwanga, K.S., Mutiviti, G.P., Vyakuno, E.K., Valimunzigha, C.K. 2023. Analyses physico-chimiques du compost issu des déchets ménagers à Butembo, Est de la République Démocratique du Congo. Parcours et Initiatives : Revue interdisciplinaire du Graben (PIRIG), 22, 91–110. https://doi.org/10.57988/crig-2331
  • 24. Nasini, L., Gigliotti, G., Balduccini, M.A., Federici, E., Cenci, G., Proietti, P. 2013. Effect of solid olive-mill waste amendment on soil fertility and olive (Olea europaea L.) tree activity. Agric. Ecosyst. Environ, 164, 292–297. https://doi.org/10.1016/j.agee.2012.10.006
  • 25. NF. U 44-051. 2006. Amendements organiques-Dénominations spécifications et marquage.
  • 26. Pakou, C., Kornaros, M., Stamatelatou, K., Lyberatos, G. 2009. On the fate of LAS, NPEOs and DEHP in municipal sewage sludge during composting. Bioresour. Technol., 100(4), 1634–1642. https://doi.org/10.1016/j.biortech.2008.0 9.025
  • 27. Paré, T., Dinel, H., Schnitzer, M. 1999. Extractability of trace metals during co-composting of biosolids and municipal solid wastes. Biology and Fertility of Soils, 29, 31–37. https://doi.org/10.1007/s003740050521
  • 28. Saffari, M., Saffari, V.R., Khabazzadeh, H., Naghavi, H. 2020. Assessment of content and chemical forms of arsenic, copper, lead, and chromium in sewage sludge compost as affected by various bulking agents. Main Group Metal Chemistry, 43(1), 56–66. https://doi.org/10.1515/mgmc-2020-0006
  • 29. Shanker, A.K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S. 2005. Chromium toxicity in plants. Environment international, 31(5), 739–753. https://doi.org/10.1016/j.envint.2005.02.003
  • 30. Singh, J., Kalamdhad, A.S. 2012. Reduction of heavy metals during composting. International Journal of Environmental Protection, 2(9), 36–43.
  • 31. Tortosa, G., Alburquerque, J.A., Ait-Baddi, G., Cegarra, J. 2012. The production of commercial organic amendments and fertilisers by composting of two-phase olive mill waste (“alperujo”). Journal of Cleaner Production, 26, 48–55. https://doi.org/10.1016/j.jclepro.2011.12.008
  • 32. Verlière, G., Heller, R. Physiol. 1981. Vig., 19(2), 263–275.
  • 33. Wang, M., Wu, Y., Zhao, J., Liu, Y., Gao, L., Jiang, Z., Tian, W. 2022. Comparison of composting factors, heavy metal immobilization, and microbial activity after biochar or lime application in straw-manure composting. Bioresource Technology, 363, 127872. https://doi.org/10.1016/j.biortech.2022.127872
  • 34. Wong J.W.C., Selvam A. 2006. Speciation of heavy metals during co-composting of sewage sludge with lime. Chemosphere, 63, 980–986. https://doi.org/10.1016/j.chemosphere.2005.08.045
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63ed2f2c-a38b-4cb1-8b1e-65b2b79f208e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.