PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High sensitive and large dynamic range quasi-distributed sensing system based on slow-light π-phase-shifted fiber Bragg gratings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we theoretically analyze the slow-light π-phase-shifted fiber Bragg grating (π-FBG) and its applications for single and multipoint/quasi-distributed sensing. Coupled-mode theory (CMT) and transfer matrix method (TMM) are used to establish the numerical modeling of slow-light π-FBG. The impact of slow-light FBG parameters, such as grating length (L), index change (Δn), and loss coefficient (α) on the spectral properties of π-FBG along with strain and thermal sensitivities are presented. Simulation results show that for the optimum grating parameters L = 50 mm, Δn = 1.5×10−4, and α = 0.10 m-1, the proposed slow-light π-FBG is characterized with a peak transmissivity of 0.424, the maximum delay of 31.95 ns, strain sensitivity of 8.380 με-1, and temperature sensitivity of 91.064 °C-1. The strain and temperature sensitivity of proposed slow-light π-FBG is the highest as compared to the slow-light sensitivity of apodized FBGs reported in the literature. The proposed grating have the overall full-width at half maximum (FWHM) of 0.2245 nm, and the FWHM of the Bragg wavelength peak transmissivity is of 0.0798 pm. The optimized slow-light π-FBG is used for quasi-distributed sensing applications. For the five-stage strain quasi-distributed sensing network, a high strain dynamic range of value 1469 με is obtained for sensors wavelength spacing as small as 2 nm. In the case of temperature of quasi-distributed sensing network, the obtained dynamic range is of 133°C. For measurement system with a sufficiently wide spectral range, the π-FBGs wavelength grid can be broadened which results in substantial increase of dynamic range of the system.
Twórcy
  • Dept. of Electronics and Electrical Engineering, IIT Guwahati, India
autor
  • Warsaw University of Technology, Institute of Electronic Systems, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
  • National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland
autor
  • Dept. of Electronics and Electrical Engineering, IIT Guwahati, India
Bibliografia
  • [1] B. Lee, Review of the present status of optical fiber sensors, Opt. Fiber Technol.9 (2003) 57–79.
  • [2] C.K.Y. Leung, K.T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M.Ghandehari, H.C. Wu, M. Imai, Review: optical fiber sensors for civilengineering applications, Mater. Struct. 48 (4) (2015) 871–906.
  • [3] J.M. López-Higuera, L.R. Cobo, A.Q. Incera, A. Cobo, Fiber optic sensors instructural health monitoring, J. Lightwave Technol. 29 (4) (2011) 587–608.
  • [4] T. Osuch, Z. Jaroszewicz, Numerical analysis of apodized fiber Bragg gratingsformation using phase mask with variable diffraction efficiency, Opt.Commun. 284 (2011) 567–572.
  • [5] E. Elzahaby, I. Kandas, M. Aly, K. Mahmoud, Sensitivity improvement ofreflective tilted FBGs, Appl. Opt. 55 (12) (2016) 3306–3312.
  • [6] K. Ennser, N. Zervas, R. Laming, Optimization of apodized linearly chirpedfiber gratings for optical communications, IEEE J. Sel. Top. Quantum Electron.34 (1998) 770–778.
  • [7] T. Osuch, K. J˛edrzejewski, L. Lewandowski, W. Jasiewicz, Shaping the spectralcharacteristics of fiber Bragg gratings written in optical fiber taper usingphase mask method, Photon. Lett. Poland 4 (2012) 128–130.
  • [8] M. Majumder, T.K. Gangopadhyay, A.K. Chakraborty, K. Dasgupta, D.K.Bhattacharya, Fibre Bragg gratings in structural health monitoring—presentstatus and applications, Sens. Actuators A Phys. 147 (2008) 150–164.
  • [9] Y. Dai, Y. Liu, J. Leng, G. Deng, A. Asundi, A novel time-division multiplexingfiber Bragg grating sensor interrogator for structural health monitoring, Opt.Lasers Eng. 47 (2009) 1028–1033.
  • [10] H. Wui, Y. Qian, W. Zhang, H. Li, X. Xie, Intelligent detection and identificationin fiber-optical perimeter intrusion monitoring system based on the FBGsensor network, Photon. Sens. 5 (2015) 365–375.
  • [11] Y. Wang, J. Gong, B. Dong, D.Y. Wang, T.J. Shillig, A. Wang, A large serialtime-division multiplexed fiber Bragg grating sensor network, J. LightwaveTechnol. 30 (2012) 2751–2756.
  • [12] Y. Yu, L. Lui, H. Tam, W. Chung, Fiber-laser-based wavelength divisionmultiplexed fiber Bragg grating sensor system, IEEE Photon. Technol. Lett. 13(2001) 702–704.
  • [13] Z. Luo, H. Wen, H. Guo, M. Yang, A time- and wavelength-divisionmultiplexing sensor network with ultra-weak fiber Bragg gratings, Opt. Exp.21 (2013) 22799–22807.
  • [14] K. St˛epie´n, M. Slowikowski, T. Tenderenda, M. Murawski, M. Szymanski, L.Szostkiewicz, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, L.R. Jaroszewicz, T.Nasilowski, Fiber Bragg gratings in hole-assisted multicore fiber for spacedivision multiplexing, Opt. Lett. 39 (2014) 3571–3574.
  • [15] N.A. Mohammed, T.A. Ali, M.H. Aly, Performance optimization of apodizedFBG-based temperature sensors in single and quasi-distributed DWDMsystems with new and different apodization profiles, AIP Adv. 3 (2013),122-125.
  • [16] T. Ali, M. Shehata, N.A. Mohammed, Design and performance investigation ofa highly accurate apodized fiber Bragg grating-based strain sensor in singleand quasi-distributed systems, Appl. Opt. 54 (2015) 5243–5251.
  • [17] N.A. Mohmammed, H.O. Elserafy, Ultra-sensitive quasi-distributedtemperature sensor based on an apodized fiber Bragg grating, Appl. Opt. 57(2018) 5243–5251.
  • [18] H. Wen, M. Terrel, S. Fan, M. Digonnet, Sensing with slow light in fiber Bragggratings, IEEE Sens. J. 12 (2012) 156–163.
  • [19] G. Skolianos, M. Bernier, R. Vallée, M.J.F. Digonnet, Observation of∼20 nsgroup delay in a low-loss apodized fiber Bragg grating, Opt. Lett. 39 (2014)3978–3981.
  • [20] Q. Wang, M. Guo, Y. Zhao, A sensitivity enhanced microdisplacement sensingmethod improved using slow light in fiber Bragg grating, IEEETrans. Inst.Meas. Control. 66 (2017) 122–130.
  • [21] G. Skolianos, A. Arora, M. Bernier, M. Digonnet, Measuring attostrains in aslow-light fiber Bragg grating, Proc. SPIE. Int. Soc. Opt. Eng. 9763 (2016) 1–10.
  • [22] M. Pisco, A. Ricciardi, S. Campopiano, C. Caucheteur, P. Mégret, A. Cutolo, A.Cusano, Fast and slow light in optical fibers through tilted fiber Bragggratings, Opt. Express 17 (2009) 23502–23510.
  • [23] Q. Wang, P. Wang, C. Du, J. Li, H. Hu, Y. Zhao, Theoretical investigation andoptimization of fiber grating based slow light, Opt. Commun. 395 (2017)201–206.
  • [24] A. Arora, M. Esmaeelpour, M. Bernier, M.J.F. Digonnet, High-resolutionslow-light fiber Bragg grating temperature sensor with phase-sensitivedetection, Opt. Lett. 23 (2018) 3337–3340.
  • [25] H. Wen, G. Skolianos, S. Fan, M. Bernier, R. Vallée, M.J.F. Digonnet, Slow-lightfiber-Bragg-grating strain sensor with a 280-femtostrain/√Hz resolution, J.Lightwave Technol. 31 (2013) 1804–1808.
  • [26] K.M. Dwivedi, G. Trivedi, S. Khijwania, Theoretical analysis of fiber Bragggrating employing novel apodization profile, IEEE Photon. Conf. (2018) 1–2.
  • [27] T. Erdogan, Fiber grating spectra, J. Lightwave Technol. 15 (1997) 1277–1294.
  • [28] G. Agrawal, Fiber Gratings (Eds.), Applications of Nonlinear Fiber Optics, 2nded., Academic press, 2008, pp. 1–53.
  • [29] M. Yamada, K. Sakuda, Analysis of almost-periodic distributed feedback slabwaveguides via a fundamental matrix approach, Appl. Opt. 26 (1987)3474–3478.
  • [30] N.B. Ali, J. Zaghdoudi, M. Kanzari, R. Kuszelewicz, The slowing of light inone-dimensional hybrid periodic and non-periodic photonic crystals, J. Opt.12 (2010) 1–9.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63e94375-b407-4caf-baca-0df3f4c407d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.