Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The challenges of photocatalytic reactor design are addressed in the present study, focusing on developing novel reactor configurations for uniform light intensity, high photon, and mass transfer efficiencies. This work developed a scalable compact UV-LED strip photocatalytic reactor comprising of a quartz tube placed inside the aluminum shell. The light source, i.e., 300 LEDs (lambda max = 365 nm) circumferentially disposed in the inner walls of shell and reactor's performance was evaluated for 3.12 x10-5 mol/dm3 methylene blue for 80% dye removal in 60 min for optimized conditions. Hydrodynamic cavities were induced by the constricted geometry and inlet pressure, which may increase the dye removal. Actinometry was performed and photonic efficiency was evaluated to be 25%, which proves that the present reactor is an efficient configuration allowing maximum dye degradation.
Czasopismo
Rocznik
Tom
Strony
31--47
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Centre for Environmental Studies, Anna University, Chennai-600 025, Tamil Nadu, India
autor
- Centre for Environmental Studies, Anna University, Chennai-600 025, Tamil Nadu, India
Bibliografia
- [1] BELVER C., BELLOD R., FUERTE A., FERNANDEZ-GARCIA M., Nitrogen-containing TiO2 photocatalysts: Part 1. Synthesis and solid characterization, Appl. Cat. B: Environ., 2006, 65, 301–308. DOI: 10.1016/j.apcatb.2006.02.007.
- [2] SERPONE N., Brief introductory remarks on heterogeneous photocatalysis, Solar En. Mater. Solar Cells, 1995, 38 369–379. DOI: 10.1016/0927-0248(94)00230-4.
- [3] KANMANI S., THANASEKARAN K., BECK D., Performance studies on novel solar photocatalytic reactors for decolourization of textile dyeing wastewaters, Indian J. Chem. Techn., 2003, 10, 638–643. DOI: http://nopr.niscair.res.in/bitstream/123456789/22806/1/IJCT%2010(6)%20638-643.pdf
- [4] LEBLEBICI E., STEFANIDIS G.D., GERVEN T.V., Comparison of photocatalytic space-time yields of 12 reactor designs for waste water treatment, Chem. Eng. Proc., 2015, 97, 106–111. DOI: 10.1016/j.cep.2015.09.009.
- [5] LIN H., VALSARAJ K.T., Development of an optical fiber monolith reactor for photocatalytic wastewater treatment, J. Appl. Electrochem., 2005, 35, 699–708. DOI: https://link.springer.com/article/10.1007/s10800-005-1364-x.
- [6] GORGES R., KREISEL G., Photocatalysis in microreactors, J. Photochem. Photobiol. A: Chemistry, 2004, 167, 95-99. DOI: 10.1016/j.jphotochem.2004.04.004.
- [7] SUNDAR K.P., KANMANI S., Progression of photocatalytic reactors and it’s comparison. A review, Chem. Eng. Res. Design, 2020, 154, 135–150. DOI: 10.1016/j.cherd.2019.11.035.
- [8] FUJISHIMA A., RAO T.N., TRYK D.A., Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1, 1–21. DOI: 10.1016/S1389-5567(00)00002-2.
- [9] LIANG H.F., SMITH C.T.G., MILLS C.A., SILVA S.R.P., The band structure of graphene oxide examined using photoluminescence spectroscopy, J. Mater. Chem. C, 2015, 3, 12484. DOI: 10.1039/C5TC00307E.
- [10] SHEN Y., YENG S., ZHOU P., SUN Q., WANG P., WAN L., LI J., CHEN L., WANG X., DING S., ZHANG D.W., Evolution of band gap and optical properties of graphene oxide with controllable reduction level, Carbon, 2013, 62, 157–164. DOI: 10.1016/j.carbon.2013.06.007.
- [11] LI X., YU J., WAGEH S., AL-GHAMDI A.A., XIE J., Graphene in photocatalysis: A review, 2016, 12, 6640–6696. DOI: 10.1002/smll.201600382.
- [12] ALROBAYI E.M., ALGUBILI A.M., ALJEBOREE A.M., ALKAIM A.F., HUSSEIN F.H., Investigation of photocatalytic removal and photonic efficiency of maxilon blue dye GRL in the presence of TiO2 nanoparticles, Part. Sci. Techn., 2015, 35, 1–7. DOI: 10.1080/02726351.2015.1120836.
- [13] JAMALI A., VANRAES R., HANSELAER P., GERVEN T.V., A batch LED reactor for the photocatalytic degradation of phenol, Chem. Eng. Proc., 2013, 71, 43–50. DOI: 10.1016/J.CEP.2013.03.010.
- [14] MIASIK D.P., RABCZAK S., Impact of solar radiation change on the collector efficiency, J. Ecol. Eng., 2017, 18, 268–272. DOI: 10.12911/22998993/67106.
- [15] SHAHRIARY L., ATHAWALE A., Graphene oxide synthesized by using modified hummers approach, Int. J. Ren. En. Environ. Eng., 2014, 2, 58–63.
- [16] ULLAH K., YE S., ZHU L., JO S.B., JANG W.K., CHO K.Y., OH W.C., Noble metal doped graphene nanocomposites and its study of photocatalytic hydrogen evolution, Solid State Sci., 2014, 31, 91–98. DOI: 10.1016/j.solidstatesciences.2014.03.006.
- [17] HATCHARD C.G., PARKER C.A., A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer, Proc. Royal Society A, London 1956, A235, 518–536. DOI: 10.1098/rspa.1956.0102.
- [18] KUHN H.J., BRASLAVSKY S.E., SCHMIDT R., Chemical actinometry (IUPAC Technical Report), Pure Appl. Chem., 2004, 76 (12), 2105–2146. DOI: 10.1351/pac200476122105.
- [19] XIONG Z., ZHANG L.L., MA J., ZHAO X.S., Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation, Chem. Com., 2010, 46, 6099–6101. DOI: 10.1039/c0cc01259a.
- [20] SRAW A., KAUR T., PANDEY Y., SOBTI A., WANCHOO R.K., TOOR A.P., Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water, J. Environ. Chem. Eng., 2018, 6, 7035–7043. DOI: 10.1016/j.jece.2018.10.062.
- [21] SAHARAN V.K., BADVE M.P., PANDIT A.B., Degradation of Reactive Red 120 dye using hydrodynamic cavitation, Chem. Eng. J., 2011, 178, 100–107. DOI: 10.1016/j.cej.2011.10.018.
- [22] BORA L.V., MEWADA R.K., Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review, Ren. Sust. En. Rev., 2017, 76, 1393–1421. DOI:10.1016/j.rser.2017.01.130.
- [23] MIA F.D, LU C.S., WU C.W., HUANG C.H., CHEN J.Y., CHEN C.C., Mechanisms of photocatalytic degradation of Victoria Blue R using nano-TiO2, separation and purification technology, 2008, 62, 423–436. DOI: 10.1016/j.seppur.2008.02.006.
- [24] TAYADE R., NATARAJAN T.S., BAJAJ H.C., Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes, Ind. Eng. Chem. Res., 2009, 48, 10262–1026. DOI: 10.1021/ie9012437.
- [25] SAMPATH S., KANMANI S., Visible-light-driven photocatalysts for hydrogen production by water splitting, En. Sources, Part A: Rec., Util., Environ. Effects, 2020, 42 (6), 719–729. DOI: 10.1080/15567036.2019.1602194.
- [26] LINLEY S., LIU Y.Y., PTACEK C.J., BLOWES D.W., GU F.X., Recyclable graphene oxide-supported titanium dioxide photocatalysts with tunable properties, Am. Chem. Soc. Appl. Mater. Interf., 2014, 6 (7), 4658 –4668. DOI: 10.1021/am4039272.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63e73fe5-e540-49ce-9295-93a37c1e4c3b