PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impacts of Brownian motion and fractional derivative on the solutions of the stochastic fractional Davey-Stewartson equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the stochastic fractional Davey-Stewartson equations (SFDSEs) that result from multiplicative Brownian motion in the Stratonovich sense are discussed. We use two different approaches, namely the Riccati-Bernoulli sub-ordinary differential equations and sine-cosine methods, to obtain novel elliptic, hyperbolic, trigonometric, and rational stochastic solutions. Due to the significance of the Davey-Stewartson equations in the theory of turbulence for plasma waves, the discovered solutions are useful in explaining a number of fascinating physical phenomena. Moreover, we illustrate how the fractional derivative and Brownian motion affect the exact solutions of the SFDSEs using MATLAB tools to plot our solutions and display a number of three-dimensional graphs. We demonstrate how the multiplicative Brownian motion stabilizes the SFDSE solutions at around zero.
Wydawca
Rocznik
Strony
art. no. 20220233
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Department of Mathematics, Faculty of Science, University of Ha’il 2440, Ha’il, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
  • Department of Mathematical Science, Collage of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
  • Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Bibliografia
  • [1] A. Davey and K. Stewartson, On three-dimensional packets of surface waves, Proc. Royal. Soc. Lond. Ser. A 338 (1974), 101–110, DOI: https://doi.org/10.1098/rspa.1974.0076.
  • [2] H. M. Fu and Z. D. Dai, Double exp-function method and application, Int. J. Nonlinear Sci. Numer. Simul. 10 (2009), 927–933, DOI: https://doi.org/10.1515/IJNSNS.2009.10.7.927.
  • [3] H. A. Zedan and S. J. Monaquel, The sine-cosine method for the Davey-Stewartson equations, Appl. Math. E-Notes 10 (2010), 103–111. http://www.math.nthu.edu.tw/amen/.
  • [4] G. Ebadi and A. Biswas, The (G′∕G) method and 1-soliton solution of the Davey-Stewartson equation, Math. Comput. Modelling 53 (2011), no. 5–6, 694–698, DOI: https://doi.org/10.1016/j.mcm.2010.10.005.
  • [5] M. A. M. Abdelaziz, A. E. Moussa, and D. M. Alrahal, Exact Solutions for the (2+1)-dimensional Davey-Stewartson equation using the generalized (G′∕G)-expansion method, J. Math. Res. 6 (2014), 91–99, DOI: https://doi.org/10.5539/jmr.v6n2p91.
  • [6] A. ElAchab, Constructing new wave solutions to the (2+1)-dimensional Davey-Stewartson equation (DSE) which arises in fluid dynamics, JMST Adv. 1 (2019), 227–232, DOI: https://doi.org/10.1007/s42791-019-00025-0.
  • [7] A. H. Bhrawy, M. A. Abdelkawy, and A. Biswas, Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), no. 4, 915–925, DOI: https://doi.org/10.1016/j.cnsns.2012.08.034.
  • [8] M. Mirzazadeh, Soliton solutions of Davey-Stewartson equation by trial equation method and ansatz approach, Nonlinear Dyn. 82 (2015), no. 4, 1775–1780, DOI: https://doi.org/10.1007/s11071-015-2276-x.
  • [9] H. Jafari, A. Sooraki, Y. Talebi, and A. Biswas, The first integral method and traveling wave solutions to Davey-Stewartson equation, Nonlinear Anal. Model Control 17 (2012), no. 2, 182–193, DOI: https://doi.org/10.15388/NA.17.2.14067.
  • [10] S. B. Yuste, L. Acedo, and K. Lindenberg, Reaction front in an A B C+ → reaction-subdiffusion process, Phys. Rev. E 69 (2004), 036126, DOI: https://doi.org/10.1103/PhysRevE.69.036126.
  • [11] W. W. Mohammed, N. Iqbal, and T. Botmart, Additive noise effects on the stabilization of fractional-space diffusion equation solutions, Mathematics 10 (2022), no. 1, 130, DOI: https://doi.org/10.3390/math10010130.
  • [12] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, The fractional-order governing equation of Lévy motion, Water Resour. Res. 36, (2000), no. 6, 1413–1423, DOI: https://doi.org/10.1029/2000WR900032.
  • [13] S. B. Yuste and K. Lindenberg, Subdiffusion-limited A A+ reactions, Phys. Rev. Lett. 87 (2001), no. 1–2, 118301, DOI: https://doi.org/10.1016/S0301-0104(02)00546-3.
  • [14] W. W. Mohammed, Fast-diffusion limit for reaction-diffusion equations with degenerate multiplicative and additive noise, J. Dynam. Differential Equations. 33 (2021), no. 1, 577–592, DOI: https://doi.org/10.1007/s10884-020-09821-y.
  • [15] E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys Rev. 61 (2000), 132–138, DOI: https://doi.org/10.1103/PhysRevE.61.132.
  • [16] M. Alshammari, W. W. Mohammed, and M. Yar, Novel analysis of fuzzy fractional Klein-Gordon model via semianalytical method, J. Funct. Spaces 2022 (2022), 4020269, DOI: https://doi.org/10.1155/2022/4020269.
  • [17] W. W. Mohammed, C. Cesarano, and F. M. Al-Askar, Solutions to the (4+1)-dimensional time-fractional Fokas equation with M-Truncated derivative, Mathematics 11 (2022), no. 1, 194, DOI: https://doi.org/10.3390/math11010194.
  • [18] M. Mouy, H. Boulares, S. Alshammari, M. Alshammar, Y. Laskri, and W. W. Mohammed, On Averaging Principle for Caputo-Hadamard fractional stochastic differential Pantograph equation, Fractal Fract. 7 (2023), no. 1, 31, DOI: https://doi.org/10.3390/fractalfract7010031.
  • [19] N. Iqbal, A. M. Albalahi, M. S. Abdo, and W. W. Mohammed, Analytical analysis of fractional-order Newell-Whitehead-Segel equation: A modified homotopy perturbation transform method, J. Funct. Spaces 2022 (2022), 3298472, DOI: https://doi.org/10.1155/2022/3298472.
  • [20] O. J. Peter, F. A. Oguntolu, M. M. Ojo, A. O. Oyeniyi, R. Jan, and I. Khan, Fractional order mathematical model of monkeypox transmission dynamics, Phys. Scr. 97 (2022), 084005, DOI: https://doi.org/10.1088/1402-4896/ac7ebc.
  • [21] R. Jan and S. Boulaaras, Analysis of fractional-order dynamics of dengue infection with non-linear incidence functions, Trans. Inst. Meas. Control 44 (2022), no. 13, 2630–2641, DOI: https://doi.org/10.1177/01423312221085049.
  • [22] S. Boulaaras, R. Jan, A. Khan, and M. Ahsan, Dynamical analysis of the transmission of dengue fever via Caputo-Fabrizio fractional derivative, Chaos Solit. Fractals 8 (2022), 100072, DOI: https://doi.org/10.1016/j.csfx.2022.100072.
  • [23] F. M. Al-Askar, C. Cesarano, and W. W. Mohammed, The influence of white noise and the beta derivative on the solutions of the BBM equation, Axioms 12 (2023), 447, DOI: https://doi.org/10.3390/axioms12050447.
  • [24] F. M. Al-Askar, C. Cesarano, and W. W. Mohammed, Abundant solitary wave solutions for the Boiti-Leon-Manna-Pempinelli equation with M-Truncated derivative, Axioms 12 (2023), 466, DOI: https://doi.org/10.3390/axioms12050466.
  • [25] R. Khalil, M. AlHorani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65–70, DOI: https://doi.org/10.1016/j.cam.2014.01.002.
  • [26] M. Eslami and H. Rezazadeh, The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo 53 (2016), no. 3, 475–485, DOI: https://doi.org/10.1007/s10092-015-0158-8.
  • [27] M. Eslami, Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations, Appl. Math. Comput. 285 (2016), 141–148, DOI: https://doi.org/10.1016/j.amc.2016.03.032.
  • [28] A. K. Ozlem, E. Hepson, K. Hosseini, H. Rezazadeh, and M. Eslami, Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class, J. King Saud Univ. Sci. 32 (2020), no. 1, 567–574, DOI: https://doi.org/10.1016/j.jksus.2018.08.013.
  • [29] F. M. Al-Askar, W. W. Mohammed, S. K. Samura, and M. El-Morshedy, The exact solutions for fractional-stochastic Drinfelad-Sokolov-Wilson equations using a conformable operator, J. Funct. Spaces 2022 (2022), 7133824, DOI: https://doi.org/10.1155/2022/7133824.
  • [30] F. M. Al-Askar, W. W. Mohammed, and M. Alshammari, Impact of Brownian motion on the analytical solutions of the space-fractional stochastic approximate long water wave equation, Symmetry 14 (2022), no. 4, 740, DOI: https://doi.org/10.3390/sym14040740.
  • [31] E. Weinan, X. Li, and E. Vanden-Eijnden, Some recent progress in multiscale modeling, multiscale modeling and simulation, Lecture Notes in Computer Science Engineering, Springer-Verlag, Berlin, vol. 39, 2004, pp. 3–21, DOI: https://doi.org/10.1007/978-3-642-18756-8_1.
  • [32] P. Imkeller and A. H. Monahan, Conceptual stochastic climate models, Stoch. Dynam. 2 (2002), no. 3, 311–326, DOI: https://doi.org/10.1142/S0219493702000443.
  • [33] W. W. Mohammed, Stochastic amplitude equation for the stochastic generalized Swift-Hohenberg equation, J. Egypt. Math. Soc. 23 (2015), 482–489, DOI: https://doi.org/10.1016/j.joems.2014.10.005.
  • [34] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer Verlag, New York, 1995.
  • [35] X. F. Yang, Z. C. Deng, and Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differential Equations 117 (2015), no. 2015, 117–133, DOI: https://doi.org/10.1186/s13662-015-0452-4.
  • [36] A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Modelling 40 (2004), no. 5–6, 499–508, DOI: https://doi.org/10.1016/j.mcm.2003.12.010.
  • [37] C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A. 224 (1996), no. 1–2, 77–84, DOI: https://doi.org/10.1016/S0375-9601(96)00770-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63e553be-2736-456a-ae3a-214934394440
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.