PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cauchy-based modelling in cementitious materials technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cauchy paved the way for constructing models in concrete technology, and elsewhere. He determined the (nonflat) surface area in 3D by measuring random total projections. Analogously, he determined the length of a curved line in 2D by way of measuring the total projections. The paper will present the mathematical expressions, because in many branches of concrete technology, modelling is found based on such Cauchy concepts. These branches – fractography in compression, tension or shear, fibre reinforcement and permeability estimation – will briefly be mentioned to demonstrate this. It has been found that, for the discussed fields of engineering relevance, major model parameters for cementitious materials are similar to those developed by Cauchy in the 19th century. In the paper some previous investigations concerning fractography, fibre reinforcement and fracture roughness will be summarized but basically a new development on porosimetry will be presented. Particularly a new achievement of successful implementation of the methodology (also based on Cauchy) for optimizing permeability estimation will be discussed.
Twórcy
autor
  • Delft University of Technology, Faculty of Civil Engineering and Geosciences, Delft, the Netherlands
autor
  • Lublin University of Technology, Faculty of Civil Engineering and Architecture, Lublin, Poland
Bibliografia
  • 1. Bathia, S.K. Directional autocorrelation and diffusional tortuosity of capillary porous media. J. Catalysis, 93: 192-196, 1985.
  • 2. Cauchy, A. “Mémoires sur rectification des courbes et la quadrature des surfaces courbes”, Cambridge University Press, Cambridge, UK. (in French ), 1882.
  • 3. Haughey, D.P., Beveridge, G.S.G. Structural properties of patched beds. Can. J. Chem. Eng., 47:130-140, 1969.
  • 4. Le, L.B.N. “Micro-level porosimetry of virtual cementitious materials. Structural impact on mechanical and durability evolution”, PhD Thesis, Delft University of Technology, the Netherlands, 2015.
  • 5. Perry, C., Gillott, J.E. The influence of mortar aggregate bond strength on the behaviour in compression. Cem. Concr. Res., 7: 553-564, 1977.
  • 6. Peterson, E.E. Diffusion in a pore of varying cross section. Am. Inst. Chem. Eng., 4: 343-345, 1958.
  • 7. Reinhardt, H.W., Stroeven, P., Uijl J.A. den, Kooistra, T.R., Vrencken, H.A.M. Einflusz van Schwingbreite, Belastungshöhe und Frequenz auf die Schwingfestigkeit von Beton bei niedrigen Bruchlastwechselzahlen Betonw. + Fertigt. Techn., 9: 498-503, 1978.
  • 8. Sobieski, W. The use of path tracking method for determining the tortuosity field in a porous bed. Gran. Mats., 18: 72, 2016.
  • 9. Stroeven, P. “Some aspects of the micromechanics of concrete”, PhD Thesis, Delft University of Technology, the Netherlands, 1973.
  • 10. Stroeven, P. Morphometry of fibre reinforced cementitious materials. Part II: Inhomogeneity and anisometry of partially oriented fibre structures. Mat. Struct., 12(67):9-20, 1978.
  • 11. Stroeven, P., Shah, S.P. Use of radiography-image analysis for steel fibre reinforced concrete. In : Testing and test methods of fibre reinforced composites. Constr. Press, Lancaster: 345-353, 1978.
  • 12. Stroeven, P. Micro- and macro-mechanical behaviour of steel fibre reinforced mortar in tension. Heron, 24(4): 7-40, 1979a.
  • 13. Stroeven, P. Geometric probability approach to the examination of microcracking in plain concrete. J. Mat. Sci., 14: 1141-1151, 1979b.
  • 14. Stroeven, P. Some observations on microcracking in concrete subjected to various loading regimes. Eng. Fract. Mech., 35(4/5): 775-782, 1990.
  • 15. Stroeven, P. Damage mechanisms in fibre reinforced concrete composites. In: Comptes rendus des neuviémes journées nationales sur les composites (AMAC, France, Saint-Étienne): 925-938, (in French), 1994.
  • 16. Stroeven, P., Dalhuisen, D.H. Damage evolution characteristics of steel fibre reinforced concrete in direct tension. Engrn. Mech., 3(4): 273-280, 1996.
  • 17. Stroeven, P. Stereological estimates for roughness and tortuosity in cementitious composites. Im. Anal. Stereol., 19: 67-70, 2000.
  • 18. Stroeven, P. A stereological approach to roughness of fracture surfaces and tortuosity of transport paths in concrete. Cem. Concr. Comp. 22: 331-341, 2000.
  • 19. Stroeven, P., Hu, J. Review paper – stereology : Historical perspective and applicability to concrete technology. Mat. Struct., 39:127-135, 2006.
  • 20. Stroeven, P. Stereological principles of spatial modeling applied to steel bibe-reinforced concrete in tension. ACI Mat. Journ., 106(3): 1-10, 2009.
  • 21. Stroeven, P. 50 Years’ focus on concrete: from meter- to nano-scale 1963-2013. Media Center, Rotterdam, 2015.
  • 22. Stroeven, P., Li, K. A modern approach to porosimetry of virtual cementitious materials. Mag. Concr. Res., 69(23): 1212-1217, 2017.
  • 23. Stroeven, P., Słowik, M. Economic and reliable estimation of cementitious materials properties on the basis of virtual models. In: Brittle Matrix Composites 12 (Eds Glinicki M.A., Jóźwiak-Niedźwiecka D., Leung C.K.Y., Olek J.), Institute of Fundamental Technological Research: 35-44, 2019.
  • 24. Sun, G.W., Sun, W., Zhang, Y.S., Liu, Z.Y. Relationship between chloride diffusivity and pore structure of hardened cement paste. J. Zhejiang Univ. Sci. A, 12(5): 360-367, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63e0695e-ffbd-48c3-9199-365e9cce57ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.