Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work deals with the electrically conductive textiles for heat generation in orthopedic compression supports. This study aimed to develop compression knitted structures with integrated electro-conductive yarns and investigate their heat generation characteristics and temperature changes during the time and under stretch which is required to generate compression. Combined half-Milano rib structured knitted fabrics were made by using silver (Ag) coated PA yarn of linear density of 66 tex and 235 tex, respectively. Six variants of specimens were developed by using different amount of electro-conductive yarns in a pattern repeat. It was found that stretch negatively influences temperature values as well as time in which the required temperature is reached. Therefore, the final wearing conditions have to be summed up during the designing of compression orthopedic heated supports.
Czasopismo
Rocznik
Tom
Strony
55--63
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Kaunas University of Technology, Faculty of Mechanical Engineering and Design, Department of Production Engineering, Studentu 56, LT-51424, Kaunas, Lithuania
autor
- Kaunas University of Technology, Faculty of Mechanical Engineering and Design, Department of Production Engineering, Studentu 56, LT-51424, Kaunas, Lithuania
autor
- Riga Technical University, Faculty of Materials Science and Applied Chemistry, Institute of Design Technologies, Kipsalas 6, LV-1048, Riga, Latvia
autor
- Riga Technical University, Technical Physics Institute, Kipsalas 6, LV-1048, Riga, Latvia
autor
- Kaunas University of Technology, Faculty of Mechanical Engineering and Design, Department of Production Engineering, Studentu 56, LT-51424, Kaunas, Lithuania
Bibliografia
- [1] Xie, J., Miao, M., Jia, Y. (2020). Mechanism of electrical conductivity in metallic fiber-based yarns. Autex Research Journal, 20(1), 63–63.
- [2] Ali, A., Baheti, V., Militky, J., Khan, Z., Gilani, S. Q. Z. (2018). Comparative performance of copper and silver coated stretchable fabrics. Fibers and Polymers, 19(3), 607–619.
- [3] Ehrmann, A., Blachowicz, T. (2017). Conductive yarns, fabrics, and coatings. In: Examination of textiles with mathematical and physical methods. Springer, Cham, pp. 13–29.
- [4] Šahta, I., Baltina, I., Baribina, N., Blums, J. (2014). Selection of conductive yarns for knitting an electrical heating element. High performance and optimum design of structures and materials, 137, 91–102.
- [5] Hwang, P. W., Chen, A.-P., Lou, C.-W., Lin, J.-H. (2014). Electromagnetic shielding effectiveness and functions of stainless steel/bamboo charcoal conductive fabrics. Journal of Industrial Textiles, 44(3), 477–494.
- [6] Bhat, N. V., Seshadri, D. T., Radhakrishnan, S. (2004). Preparation, characterization, and performance of conductive fabrics: Cotton+ PANi. Textile Research Journal, 74(2), 155–166.
- [7] Lee, J. Y., Park, D. W., Lim, J. O. (2003). Polypyrrole-coated woven fabric as a flexible surface-heating element. Macromolecular Research, 11(6), 481–487.
- [8] Guo, L., Sandsjö, L., Ortiz-Catalan, M., Skrifvars, M. (2020). Systematic review of textile-based electrodes for long-term and continuous surface electromyography recording. Textile Research Journal, 90(2), 227–244.
- [9] Droval, G., Glouannec, P., Feller, J. F. (2005). Simulation of electrical and thermal behavior of conductive polymer composites heating elements. Journal of Thermophysics and Heat Transfer, 19(3), 375–381.
- [10] Kayacan, O., Bulgun, E. Y. (2009). Heating behaviors of metallic textile structures. International Journal of Clothing Science and Technology, 21(2–3), 127–136.
- [11] Hertleer, C., Meul, J., De May, G., Vasile, S., Odhiambo, S. A., et al. (2020). Mathematical model predicting the heat and power dissipated in an electroconductive contact in a hybrid woven fabric. Autex Research Journal, 20(2), 133–139.
- [12] Sparavigna, A. C., Florio, L., Avloni, J., Henn, A. R. (2010). Polypyrrole coated PET fabrics for thermal applications. Materials Sciences and Applications, 1(4), 253.
- [13] Maity, S., Chatterjee, A., Singh, B., Sin, A. P. (2014). Polypyrrole based electro-conductive textiles for heat generation. The Journal of the Textile Institute, 105(8), 887–893.
- [14] Hamdani, S. T. A., Potluri, P., Fernando, A. (2013). Thermo-mechanical behavior of textile heating fabric based on silver coated polymeric yarn. Materials, 6(3), 1072–1089.
- [15] Ališauskienė, D., Mikučionienė, D., Milašiūtė, L. (2013). Influence of inlay-yarn properties and insertion density on the compression properties of knitted orthopaedic supports. Fibres & Textiles in Eastern Europe, 6 (102), 74–78.
- [16] Muraliene, L., Mikucioniene, D., Laureckiene, G., Brazaitis, M. (2019). New approach to evaluation of orthopaedic supports compression properties. Journal of Industrial Textiles, 49(3), 352–364.
- [17] Alisauskiene, D., Mikucioniene, D. (2012). Influence of the rigid element area on the compression properties of knitted orthopaedic supports. Fibres & Textiles in Eastern Europe, 20(6A), 103–107.
- [18] Mikučionienė, D., Milašiūtė, L. (2017). Influence of knitted orthopaedic support construction on compression generated by the support. Journal of Industrial Textiles, 47(4), 551–566.
- [19] Paulauskas, H., Baranauskiene, N., Wang, J., Mikučionienė, D. (2020). Local knee heating increases spinal and supraspinal excitability and enhances plantar flexion and dorsiflexion torque production of the ankle in older adults. European Journal of Applied Physiology, doi: 10.1007/s00421-020-04449-8.
- [20] Brazaitis, M., Paulauskas, H., Eimantas, N., Daniuseviciute, L., Volungevicius, G., et al. (2019). Motor performance is preserved in healthy aged adults following severe whole-body hyperthermia. International Journal of Hyperthermia, 36(1), 65–74.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63dd4e5d-1d58-4be1-84b6-35ecac1ea571